Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 97, nr 4 | 354--369
Tytuł artykułu

Commoditization of wet and high ash biomass : wet torrefaction - a review

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biomass is a non-intermittent energy source, which can play an important role in grid-based energy systems, since they need some non-intermittent sources in order to balance the variability of intermittent sources as wind and solar energy. Currently, this role is played mostly by fossil fuels, mainly because of the bulk size of a single source. Higher variability and lower energy concentration, among with some properties of biomass, are obstacles that prevent it from fully becoming a commodity. There are processes, such as dry torrefaction and hydrothermal carbonization (HTC) that could potentially help in terms of making biomass a tradable commodity, as is the case with fossil fuels. HTC, also known as wet torrefaction, might help solve problems that dry torrefaction is incapable of solving. These obstacles are, namely: high ash content, slagging and fouling properties of biomass (along with corrosion). Also the high moisture content of some types of biomass poses a problem, since they usually require substantial amounts of heat for drying. This paper reviews current knowledge about a process that could possibly transform problematic types of biomass into tradable commodities and compares it with other processes offering similar outcomes.
Wydawca

Rocznik
Strony
354--369
Opis fizyczny
Bibliogr. 106 poz., tab., wykr.
Twórcy
  • Wroclaw University of Science andTechnology, Faculty of Mechanical and Power Engineering , Wyb.Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science andTechnology, Faculty of Mechanical and Power Engineering , Wyb.Wyspianskiego 27, 50-370 Wroclaw, Poland, lukasz.niedzwiecki@10g.pl
autor
  • University of Twente, Drienelolaan 5, 7522 NB, Enschede, Netherlands
  • Wroclaw University of Science andTechnology, Faculty of Mechanical and Power Engineering , Wyb.Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] R. E. Sims, The brilliance of bioenergy: in business and in practice, Earthscan, 2002.
  • [2] D. L. Klass, Biomass for renewable energy, fuels, and chemicals, Academic press, 1998.
  • [3] J. Dinwoodie, Timber, its nature and behaviour, Taylor & Francis, 2000.
  • [4] R. Björheden, P. Hakkila, A. Lowe, C. Smith, Bioenergy from Sustainable Forestry: Guiding Principles and Practice, Dordrecht, Kluwer Academic Pub, 2002.
  • [5] M. T. Reza, J. Andert, B. Wirth, D. Busch, J. Pielert, J. G. Lynam, J. Mumme, Hydrothermal carbonization of biomass for energy and crop production, Applied Bioenergy 1 (1) (2014) 11-29.
  • [6] F. Vilela, K. Zhang, M. Antonietti, Conjugated porous polymers for energy applications, Energy & Environmental Science 5 (7) (2012) 7819-7832.
  • [7] A. Kruse, A. Funke, M.-M. Titirici, Hydrothermal conversion of biomass to fuels and energetic materials, Current opinion in chemical biology 17 (3) (2013) 515-521.
  • [8] M. Titirici, M. Sevilla, Hydrothermal carbonization: a greener route towards the synthesis of advanced carbon materials, Boletin del Grupo Español del Carbon 1 (25) (2012) 7-17.
  • [9] M.-M. Titirici, M. Antonietti, Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization, Chemical Society Reviews 39 (1) (2010) 103-116.
  • [10] M. Antonietti, M.-M. Titirici, Coal from carbohydrates: The “chimie douce” of carbon, Comptes Rendus Chimie 13 (1) (2010) 167-173.
  • [11] M.-M. Titirici, M. Antonietti, N. Baccile, Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses, Green Chemistry 10 (11) (2008) 1204-1212.
  • [12] L. Zhao, N. Baccile, S. Gross, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.-M. Titirici, Sustainable nitrogen-doped carbonaceous materials from biomass derivatives, Carbon 48 (13) (2010) 3778-3787.
  • [13] B. Burger, Electricity production from solar and wind in germany in 2014, Tech. rep., Fraunhofer Institute for Solar Energy Systems ISE (2014).
  • [14] K. J. Mościcki, Ł. Niedźwiecki, P. Owczarek, M. Wnukowski, Commoditization of biomass: dry torrefaction and pelletization-a review, Journal of power technologies 94 (4) (2014) 233-249.
  • [15] R. Walton, B. Bommel, A complete and comprehensive overview of torrefaction technologies, Tech. rep., E-Energy Market, http://www. eenergymarket.com/mall/market-reports-and-studies. html (2011).
  • [16] J. Koppejan, S. Sokhansanj, S. Melin, S. Madrali, Status overview of torrefaction technologies, Tech. rep., IEA Bioenergy Task 32 (2012).
  • [17] D. R. Nhuchhen, P. Basu, B. Acharya, A comprehensive review on biomass torrefaction, International Journal of Renewable Energy & Biofuels 2014 (2014) 1-56.
  • [18] J. Shankar Tumuluru, S. Sokhansanj, J. R. Hess, C. T. Wright, R. D. Boardman, A review on biomass torrefaction process and product properties for energy applications, Industrial Biotechnology 7 (5) (2011) 384-401.
  • [19] L. Nunes, J. Matias, J. Catalão, A review on torrefied biomass pellets as a sustainable alternative to coal in power generation, Renewable and Sustainable Energy Reviews 40 (2014) 153-160.
  • [20] P. Basu, C. Kefa, L. Jestin, Boilers and burners: design and theory, Springer Science & Business Media, 2012.
  • [21] P. Basu, Combustion and gasification in fluidized beds, CRC press, 2006.
  • [22] K. Rayaprolu, Boilers for power and process, CRC Press, 2009.
  • [23] D. A. Tillman, D. Duong, B. Miller, Chlorine in solid fuels fired in pulverized fuel boilers-sources, forms, reactions, and consequences: A literature review, Energy & Fuels 23 (7) (2009) 3379-3391.
  • [24] D. Mudgal, S. Singh, S. Prakash, Corrosion problems in incinerators and biomass-fuel-fired boilers, International Journal of Corrosion 2014.
  • [25] K. Hein, Operatinal problems, trace emissions and by-product management for industrial biomass co-combustion, Tech. rep., Institute of Process Engineering and Power Plant Technology, University of Stuttgart (1999).
  • [26] Bisyplan web-based handbook, [Accessed 24 december 2014]. (2012). URL http://bisyplan.bioenarea.eu/html-files-en/
  • [27] F. Rosillo-Calle, J. Woods, The biomass assessment handbook: bioenergy for a sustainable environment, Earthscan, 2012.
  • [28] A. Broch, U. Jena, S. K. Hoekman, J. Langford, Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae, Energies 7 (1) (2013) 62-79.
  • [29] A. T. Mursito, T. Hirajima, K. Sasaki, Upgrading and dewatering of raw tropical peat by hydrothermal treatment, Fuel 89 (3) (2010) 635-641.
  • [30] A. Funke, F. Ziegler, Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering, Biofuels, Bioproducts and Biorefining 4 (2) (2010) 160-177.
  • [31] J. R. Pels, P. Bergman, TORWASH: proof of principle, phase 1, ECN, Energy Research Centre of the Netherlands, 2006.
  • [32] W. Yan, T. C. Acharjee, C. J. Coronella, V. R. Vasquez, Thermal pretreatment of lignocellulosic biomass, Environmental Progress & Sustainable Energy 28 (3) (2009) 435-440.
  • [33] A. Funke, F. Ziegler, Heat of reaction measurements for hydrothermal carbonization of biomass, Bioresource technology 102 (16) (2011) 7595-7598.
  • [34] W. Yan, J. T. Hastings, T. C. Acharjee, C. J. Coronella, V. R. Vásquez, Mass and energy balances of wet torrefaction of lignocellulosic biomass, Energy & Fuels 24 (9) (2010) 4738-4742.
  • [35] M. T. Reza, W. Yan, M. H. Uddin, J. G. Lynam, S. K. Hoekman, C. J. Coronella, V. R. Vásquez, Reaction kinetics of hydrothermal carbonization of loblolly pine, Bioresource technology 139 (2013) 161-169.
  • [36] H. A. Ruiz, R. M. Rodriguez-Jasso, B. D. Fernandes, A. A. Vicente, J. A. Teixeira, Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review, Renewable and Sustainable Energy Reviews 21 (2013) 35-51.
  • [37] S. G. Allen, L. C. Kam, A. J. Zemann, M. J. Antal, Fractionation of sugar cane with hot, compressed, liquid water, Industrial & Engineering Chemistry Research 35 (8) (1996) 2709-2715.
  • [38] L. Deng, T. Zhang, D. Che, Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass, Fuel Processing Technology 106 (2013) 712-720.
  • [39] J. Koppejan, S. Van Loo, The handbook of biomass combustion and co-firing, Routledge, 2012.
  • [40] A. Saddawi, J. Jones, A. Williams, C. Le Coeur, Commodity fuels from biomass through pretreatment and torrefaction: effects of mineral content on torrefied fuel characteristics and quality, Energy & Fuels 26 (11) (2012) 6466-6474.
  • [41] M. Cocchi, L. Nikolaisen, M. Junginger, C. S. Goh, J. Heinimö, D. Bradley, R. Hess, J. Jacobson, L. P. Ovard, D. Thrän, C. Hennig, M. Deutmeyer, P. P. Schouwenberg, D. Marchal, Global wood pellet industry market and trade study, Tech. rep., International Energy Agency (2011).
  • [42] B. Erlach, B. Wirth, G. Tsatsaronis, Co-production of electricity; heat and biocoal pellets from biomass: A techno-economic comparison with wood pelletizing, in: World Renewable Energy Congress-Sweden; 8-13 May; 2011; Linköping; Sweden, no. 57, Linköping University Electronic Press, 2011, pp. 508-515.
  • [43] A. M. Shulenberger, M. Wechsler, Device and method for conversion of biomass to biofuel (2010).
  • [44] B. Wirth, J. Mumme, Anaerobic digestion of waste water from hydrothermal carbonization of corn silage, Applied Bioenergy 1 (1).
  • [45] A. Funke, J. Mumme, M. Koon, M. Diakite, Cascaded production of biogas and hydrochar from wheat straw: energetic potential and recovery of carbon and plant nutrients, Biomass and bioenergy 58 (2013) 229-237.
  • [46] I. Oliveira, D. Blöhse, H.-G. Ramke, Hydrothermal carbonization of agricultural residues, Bioresource technology 142 (2013) 138-146.
  • [47] A. Funke, F. Reebs, A. Kruse, Experimental comparison of hydrothermal and vapothermal carbonization, Fuel processing technology 115 (2013) 261-269.
  • [48] M.-M. Titirici, A. Thomas, M. Antonietti, Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the co 2 problem?, New Journal of Chemistry 31 (6) (2007) 787-789.
  • [49] S. Chang, Z. Zhao, A. Zheng, X. Li, X. Wang, Z. Huang, F. He, H. Li, Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor, Bioresource technology 138 (2013) 321-328.
  • [50] M. T. Reza, J. G. Lynam, M. H. Uddin, C. J. Coronella, Hydrothermal carbonization: fate of inorganics, Biomass and Bioenergy 49 (2013) 86-94.
  • [51] J. E. White, W. J. Catallo, B. L. Legendre, Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies, Journal of Analytical and Applied Pyrolysis 91 (1) (2011) 1-33.
  • [52] J. Stemann, A. Putschew, F. Ziegler, Hydrothermal carbonization: process water characterization and effects of water recirculation, Bioresource technology 143 (2013) 139-146.
  • [53] S. K. Hoekman, A. Broch, C. Robbins, B. Zielinska, L. Felix, Hydrothermal carbonization (htc) of selected woody and herbaceous biomass feedstocks, Biomass Conversion and Biorefinery 3 (2) (2013) 113-126.
  • [54] M. T. Reza, E. Rottler, L. Herklotz, B. Wirth, Hydrothermal carbonization (htc) of wheat straw: Influence of feedwater ph prepared by acetic acid and potassium hydroxide, Bioresource technology 182 (2015) 336-344.
  • [55] M. H. Uddin, M. T. Reza, J. G. Lynam, C. J. Coronella, Effects of water recycling in hydrothermal carbonization of loblolly pine, Environmental Progress & Sustainable Energy 33 (4) (2014) 1309-1315.
  • [56] W. Tirler, A. Basso, Resembling a “natural formation pattern” of chlorinated dibenzo-p-dioxins by varying the experimental conditions of hydrothermal carbonization, Chemosphere 93 (8) (2013) 1464-1470.
  • [57] X. Lu, B. Jordan, N. D. Berge, Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques, Waste management 32 (7) (2012) 1353-1365.
  • [58] N. D. Berge, K. S. Ro, J. Mao, J. R. Flora, M. A. Chappell, S. Bae, Hydrothermal carbonization of municipal waste streams, Environmental science & technology 45 (13) (2011) 5696-5703.
  • [59] C. He, A. Giannis, J.-Y. Wang, Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior, Applied Energy 111 (2013) 257-266.
  • [60] Solid biofuels - fuel specifications and classes. part 1 general requirements (2014).
  • [61] A. Zheng, Z. Zhao, S. Chang, Z. Huang, K. Zhao, G. Wei, F. He, H. Li, Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs, Bioresource technology 176 (2015) 15-22.
  • [62] H. S. Kambo, A. Dutta, Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel, Energy conversion and management 105 (2015) 746-755.
  • [63] Q.-V. Bach, K.-Q. Tran, Dry and wet torrefaction of woody biomass-a comparative studyon combustion kinetics, Energy Procedia 75 (2015) 150-155.
  • [64] M. Pala, I. C. Kantarli, H. B. Buyukisik, J. Yanik, Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation, Bioresource technology 161 (2014) 255-262.
  • [65] W.-H. Chen, S.-C. Ye, H.-K. Sheen, Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating, Bioresource technology 118 (2012) 195-203.
  • [66] M. Wnukowski, P. Owczarek, et al., Wet torrefaction of miscanthus-characterization of hydrochars in view of handling, storage and combustion properties, Journal of Ecological Engineering 16 (3) (2015) 161-167.
  • [67] D. Basso, F. Patuzzi, D. Castello, M. Baratieri, E. C. Rada, E. Weiss-Hortala, L. Fiori, Agro-industrial waste to solid biofuel through hydrothermal carbonization, Waste Management 47 (2016) 114-121.
  • [68] X. Lu, P. J. Pellechia, J. R. Flora, N. D. Berge, Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose, Bioresource technology 138 (2013) 180-190.
  • [69] M. Pronobis, Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations, Biomass and Bioenergy 28 (4) (2005) 375-383.
  • [70] B. Jenkins, L. Baxter, T. Miles Jr, T. Miles, Combustion properties of biomass, Fuel processing technology 54 (1-3) (1998) 17-46.
  • [71] E. Sermyagina, J. Saari, J. Kaikko, E. Vakkilainen, Hydrothermal carbonization of coniferous biomass: Effect of process parameters on mass and energy yields, Journal of Analytical and Applied Pyrolysis 113 (2015) 551-556.
  • [72] V. Benavente, E. Calabuig, A. Fullana, Upgrading of moist agroindustrial wastes by hydrothermal carbonization, Journal of Analytical and Applied Pyrolysis 113 (2015) 89-98.
  • [73] E. Erdogan, B. Atila, J. Mumme, M. T. Reza, A. Toptas, M. Elibol, J. Yanik, Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor, Bioresource technology 196 (2015) 35-42.
  • [74] J. Poerschmann, B. Weiner, H. Wedwitschka, A. Zehnsdorf, R. Koehler, F.-D. Kopinke, Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of elodea nuttallii, Bioresource technology 189 (2015) 145-153.
  • [75] M. Sevilla, J. A. Macia-Agullo, A. B. Fuertes, Hydrothermal carbonization of biomass as a route for the sequestration of co 2: chemical and structural properties of the carbonized products, Biomass and Bioenergy 35 (7) (2011) 3152-3159.
  • [76] E. Danso-Boateng, G. Shama, A. D. Wheatley, S. J. Martin, R. Holdich, Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production, Bioresource technology 177 (2015) 318-327.
  • [77] T. Keipi, H. Tolvanen, L. Kokko, R. Raiko, The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples, Biomass and Bioenergy 66 (2014) 232-239.
  • [78] M. Deutmeyer, D. Bradley, B. Hektor, R. Hess, L. Nikolaisen, J. Tumuluru, M. Wild, Possible effect of torrefaction on biomass trade, in: IEA bioenergy task, Vol. 40, 2012.
  • [79] B. Batidzirai, A. Mignot, W. Schakel, H. Junginger, A. Faaij, Biomass torrefaction technology: Techno-economic status and future prospects, Energy 62 (2013) 196-214.
  • [80] M. Svanberg, I. Olofsson, J. Flodén, A. Nordin, Analysing biomass torrefaction supply chain costs, Bioresource technology 142 (2013) 287-296.
  • [81] Handbook for the certification of wood pellets for heating purposes v 2.0„ published by European Pellet Council (2013).
  • [82] G. Christa, P. Wilfried, G. Michael, H. A. HFA, Hygroscopicity of wood pellets test method development-influence on pellet quality-coating of wood pellets, in: Proceedings of the 2nd World Conference on Pellets, 2006.
  • [83] H. M. Künzel, Indoor relative humidity in residential buildings- a necessary boundary condition to assess the moisture performance of building envelope systems, Download: http://www.hoki. ibp. fraunhofer. de/ibp/publikationen/fachzeitschriften/wksb%20Raumluftfeuchte1_E. pdf.
  • [84] G. J. Jenkins, et al., The climate of the United Kingdom and recent trends, Exeter: Met Office Hadley Centre, 2007.
  • [85] T. C. Acharjee, C. J. Coronella, V. R. Vasquez, Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass, Bioresource technology 102 (7) (2011) 4849-4854.
  • [86] W. Yang, T. Shimanouchi, M. Iwamura, Y. Takahashi, R. Mano, K. Takashima, T. Tanifuji, Y. Kimura, Elevating the fuel properties of humulus lupulus, plumeria alba and calophyllum inophyllum l. through wet torrefaction, Fuel 146 (2015) 88-94.
  • [87] W. Yan, S. K. Hoekman, A. Broch, C. J. Coronella, Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets, Environmental Progress & Sustainable Energy 33 (3) (2014) 676-680.
  • [88] Z. Liu, A. Quek, R. Balasubramanian, Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars, Applied Energy 113 (2014) 1315-1322.
  • [89] M. T. Reza, M. H. Uddin, J. G. Lynam, C. J. Coronella, Engineered pellets from dry torrefied and htc biochar blends, Biomass and Bioenergy 63 (2014) 229-238.
  • [90] S. K. Hoekman, A. Broch, A. Warren, L. Felix, J. Irvin, Laboratory pelletization of hydrochar from woody biomass, Biofuels 5 (6) (2014) 651-666.
  • [91] Solid biofuels - determination of mechanical durability of pellets and briquettes - part 1: Pellets (2015).
  • [92] U. Svedberg, J. Samuelsson, S. Melin, Hazardous off-gassing of carbon monoxide and oxygen depletion during ocean transportation of wood pellets, Annals of occupational hygiene 52 (4) (2008) 259-266.
  • [93] X. Kuang, T. J. Shankar, X. T. Bi, S. Sokhansanj, C. Jim Lim, S. Melin, Characterization and kinetics study of off-gas emissions from stored wood pellets, Annals of Occupational Hygiene 52 (8) (2008) 675-683.
  • [94] S. Gauthier, H. Grass, M. Lory, T. Krämer, M. Thali, C. Bartsch, Lethal carbon monoxide poisoning in wood pellet storerooms - two cases and a review of the literature, Annals of occupational hygiene 56 (7) (2012) 755-763.
  • [95] W. Emhofer, K. Lichtenegger, W. Haslinger, H. Hofbauer, I. Schmutzer-Roseneder, S. Aigenbauer, M. Lienhard, Ventilation of carbon monoxide from a biomass pellet storage tank-a study of the effects of variation of temperature and cross-ventilation on the efficiency of natural ventilation, Annals of Occupational Hygiene 59 (1) (2014) 79-90.
  • [96] Eh40/2005 workplace exposure limits, published by Health and Safety Executive (United Kingdom) (2011).
  • [97] C. H. Medina, H. Sattar, H. N. Phylaktou, G. E. Andrews, B. M. Gibbs, Explosion reactivity characterisation of pulverised torrefied spruce wood, Journal of Loss Prevention in the Process Industries 36 (2015) 287-295.
  • [98] A. Boskovic, P. Basu, P. Amyotte, An exploratory study of explosion potential of dust from torrefied biomass, The Canadian Journal of Chemical Engineering 93 (4) (2015) 658-663.
  • [99] C. H. Medina, B. MacCoitir, H. Sattar, D. J. Slatter, H. N. Phylaktou, G. E. Andrews, B. M. Gibbs, Comparison of the explosion characteristics and flame speeds of pulverised coals and biomass in the iso standard 1m 3 dust explosion equipment, Fuel 151 (2015) 91-101.
  • [100] D. M. Boylan, G. K. Roberts, B. Zemo, J. L. Wilson, Torrefied wood field tests at a coal-fired power plant, in: Pulp and Paper Industry Technical Conference, Conference Record of 2014 Annual, IEEE, 2014, pp. 101-107.
  • [101] Accessed September 2015. [link]. URL https://www.ecn.nl/news/item/successful-test-with-innovative-renewable-energy-source-at-amer-power-plant/
  • [102] Accessed September 2015. [link]. URL http://biomassmagazine.com/articles/10027/dutch-power-plant-successfully-tests-torrefiedbiomass-pellets
  • [103] N. Padban, First experiences from large scale co-gasification tests with refined biomass fuels, in: Central European Biomass Conference. 17th January, 2014.
  • [104] Hard coal - determination of hardgrove grindability index (2015).
  • [105] Accessed September 2015. [link]. URL http://www.businesswire.com/news/home/20121122005340/en/HTC-1-Industrial-Planthydrothermal-carbonization-Worldwide-AVACO2#. Vf7pr5eoPhp
  • [106] Accessed September 2015. [link]. URL http://www.suncoal.de/en/technology/htc-pilotplant.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7b5b9d23-e725-4360-b246-a6668cd84195
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.