Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 43, nr 1 | 409--417
Tytuł artykułu

A brighter place: overview of microstructured sunlight guide

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This article provides an overview of the daylighting system using existing and advanced submicron technology for buildings. The approaches of movable and fixed sunlight guiding system for saving the energy of artificial lighting will be reviewed. The major part is devoted to the sunlight guide panel / film based on a formed prismatic microstructure on transparent substrate by UV-imprint and roll-to-roll process. Design/methodology/approach: To achieve the prismatic microstructure sunlight guide panel / film, the wide aspects including the suitable materials, optical design of the microstructure and tuning the imprint processes are covered. In addition, to estimate the effectiveness of sunlight guide panel / film, a series of experiments were performed and compared with the prediction. Findings: The analysis reveals the outgoing light above the horizontal level of the transom in a major portion. It indeed provides the adequate indoor daylighting by the proposed sunlight guide panel / film. Research limitations/implications:The use of micro-polygonal-structured sunlight guide panel/film to deliver the daylight into the core area of a building is recommended as future research to enhance the indoor illumination by daylighting system. The portion of outgoing light below 90° causes the glare. Practical implications: The authors conclude the proposed prismatic sunlight guide panel/film is a promising approach for guiding daylight into a room. Originality/value: The reviewed daylighting system with submicron-patterned prismatic sunlight guide panel/film made of inorganic-organic materials is based on the authors’ original work of daylighting techniques. It significantly elevates the use of sunlight and saves energy consumption in a building.
Wydawca

Rocznik
Strony
409--417
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Power Mechanical Engineering, National Tsing Hua University101, Sec. 2 Kuang Fu Road, Hsinchu 300, Taiwan, ROC, hocheng@pme.nthu.edu.tw
autor
  • Department of Power Mechanical Engineering, National Tsing Hua University101, Sec. 2 Kuang Fu Road, Hsinchu 300, Taiwan, ROC
autor
  • Mechanical and System Research Laboratories, Industrial Technology Research Institute Bldg. 22, 195, Sec. 4 Chung Hsing Road, Chu Tung, Hsinchu 310, Taiwan, ROC
autor
  • Mechanical and System Research Laboratories, Industrial Technology Research Institute Bldg. 22, 195, Sec. 4 Chung Hsing Road, Chu Tung, Hsinchu 310, Taiwan, ROC
Bibliografia
  • [1] D.I.J. Knissel, Energy Efficient Office Buildings. Expert Information, Institut Wohnen und Umwelt, Darmstadt, 2004.
  • [2] P. Tregenza, D. Loe, The Design of Lighting. E & FN Spon, London, 1998.
  • [3] C.L. Robbins, Daylighting: Design and Analysis. Van Nostrand Reinhold, New York, 1986.
  • [4] R.G. Hopkinson, P. Petherbridge, J. Longmore, Daylighting. Heinemann, London, 1966.
  • [5] K. Johnsen, R. Watkins, Daylight in Buildings, ECBCS Annex 29 / SHC Task 21 Project Summary Report, 2010.
  • [6] A. Rosemann, M. Mossman, L. Whitehead, Development of a Cost-effective Solar Illumination System to Bring Natural Light into the Building Core, Solar Energy 82 (2008) 302-310.
  • [7] V. Viereck, J. Ackermann, Q. Li, A. Jäkel, J. Schmid, H. Hillmer, Sun Glasses for Buildings based on Micro Mirror Arrays: Technology, Control by Networked Sensors and Scaling Potential, Proceedings of the 5th International Conference on Networked Sensing Systems, INSS’2008, Kanazawa, 2008, 135-139.
  • [8] L. Kinney, R. McCluney, G. Cler, J. Hutson, New Designs in Active Daylighting: Good Ideas Whose Time Has (Finally) Come, Proceedings of International Solar Energy Society 2005 Solar World Conference, Orlando, 2005.
  • [9] I.R. Edmonds, D.J. Pearce, Enhancement of Crop Illuminance in High Latitude Greenhouses with Laser-cut Panel Glazing, Solar Energy 66 (1999) 255-265.
  • [10] M. Andersen, Innovative Bidirectional Video-Goniophotometer for Advanced Fenestration Systems, PhD thesis, Swiss Federal Institute of Technology, Switzerland, 2004.
  • [11] Saint-Gobain Glass, Marine Application, France, SGG LUMITOP®.
  • [12] G.C. Firestone, A.Y.Yi, Precision Compression Molding of Glass Microlenses and Microlens Arrays - An Experimental Study, Applied Optics 44 (2005) 6115-6122.
  • [13] M. Komori, H. Uchiyama, H. Takebe, T. Kusuura, K. Kobayashi, H. Kuwahara, T. Tsuchiya, Micro/nanoimprinting of Glass Under High Temperature Using a CVD Diamond Mold, Journal of Micromechanics and Microengineering 18 (2008) 06501.
  • [14] T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, J. Nishii, Glass Imprinting Process for Fabrication of Sub-Wavelength Periodic Structures, Japanese Journal of Applied Physics 47 (2008) 4746-4750.
  • [15] C. Marzolin, S.P. Smith, M. Prentiss, G.M. Whitesides, Fabrication of Glass Microstructures by Micro-Molding of Sol-Gel Precursors, Advanced Materials 10, (1998) 571-574.
  • [16] V.K. Parashar, A. Sayah, M. Pfeffer, F. Schochb, J. Gobrechtc, M.A.M. Gijs, Nano-Replication of Diffractive Optical Elements in Sol-Gel Derived Glasses, Microelectronic Engineering 67-68 (2003) 710-719.
  • [17] W.S. Kim, J.H. Lee, S.Y. Shin, B.S. Bae, Y. Kim, Fabrication of Ridge Waveguides by UV Embossing and Stamping of Sol-Gel Hybrid Materials, IEEE Photonics Technology Letters 16 (2004) 1888-1890.
  • [18] K. Shinmou, K. Nakama, T. Koyama, Fabrication of Micro-Optic Elements by the Sol-Gel Method, Journal of Sol-Gel Science and Technology 19 (2000) 267-269.
  • [19] H. Hocheng, T.Y. Huang, T.H. Chou, W.H. Yang, Microstructural Fabrication and Design of Sunlight Guide Panels of Inorganic-Organic Hybrid Material, Energy and Buildings. (in Revision)
  • [20] M. Izu, T. Ellison, Roll-to-roll Manufacturing of Amorphous Silicon Alloy Solar Cells with In Situ Cell Performance Diagnostics, Solar Energy Materials & Solar Cells 78 (2003) 613-626.
  • [21] S.H. Ahn, L.J. Guo, High-Speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates, Advanced Materials 20 (2008) 2044-2049.
  • [22] F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A Roll-to-roll Process to Flexible Polymer Solar Cells: Model Studies, Manufacture and Operational Stability Studies, Journal of Materials Chemistry 19 (2009) 5442-5451.
  • [23] V.W. Jones, S. Theiss, M. Gardiner, J. Clements, J. Florczak, Roll to Roll Manufacturing of Subwavelength Optics, Proceedings of SPIE 7205 (2009) 72050T.
  • [24] T.H. Chou, W.H. Yang, T.Y. Huang, H. Hocheng, Roll-to-roll Embossing of Sunlight Guide Film with Wide Outgoing Angle, Proceedings of 10th International Symposium on Measurement and Quality Control, ISMQC, Osaka, 2010.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7b3422f4-353f-4ffa-9c85-006a229af3df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.