Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 23, nr 2 | 76--83
Tytuł artykułu

The impact of filler thermomechanical modifications on static and dynamic mechanical performance of flexible foamed polyurethane/ground tire rubber/zinc borate composites

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rapid development of the automotive industry is very beneficial to many aspects of human life, but it is also a very significant environmental burden. The most straightforward impact is related to the generation of exhaust, but the management of post-consumer car parts is also a major challenge. Among them, waste tires are very burdensome due to their enormous numbers. Therefore, it is essential to develop novel, environmentally friendly methods for their disposal, which would reduce their environmental impacts. One of the most promising approaches is shredding, resulting in the generation of ground tire rubber (GTR), which can be introduced into polymeric materials as a filler. The presented work is related to the thermomechanical treatment of GTR in a twin-screw extruder assisted by zinc borate (ZB), whose incorporation is aimed to increase interparticle friction within the extruder barrel. The impact of the treatment conditions on the particle size and Surface development of the GTR/ZB compositions was evaluated. Modified GTR was introduced into flexible polyurethane (PU) foams, and the impact on the static and dynamic mechanical performance of the resulting composites was investigated. Increasing the treatment temperature occurred to have an adverse effect on the tensile performance of the composites due to the agglomeration of GTR particles limiting the efficiency of stress transfer, which was also confirmed by dynamic mechanical analysis. On the other hand, increasing the ZB share in the GTR/ZB compositions limited PU disruptions related to the reactivity of the GTR functional groups with isocyanates, which enhanced the mechanical performance of the composites. It was proven that the proposed method of GTR thermomechanical treatment assisted by ZB might benefit the performance of flexible PU foamed composites, which could broaden the application range of GTR and provide novel ways for its efficient utilization.
Wydawca

Rocznik
Strony
76--83
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Institute of Materials Technology, ul. Piotrowo 3, 60-965 Poznan, Poland, aleksander.hejna@put.poznan.pl
  • Gdansk University of Technology, Department of Polymer Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Department of Polymer Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Department of Polymer Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Department of Polymer Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Department of Molecular Biotechnology and Microbiology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Poznan University of Technology, Institute of Materials Engineering, ul. Jana Pawła II 24, 60-965 Poznan, Poland
  • Bydgoszcz University of Science and Technology, Department of Polymer Technology, ul. S. Kaliskiego 7, 85-326 Bydgoszcz, Poland
Bibliografia
  • [1] Sienkiewicz M., Borzędowska-Labuda K., Wojtkiewicz A., Janik H., Development of methods improving storage stability of bitumen modified with ground tire rubber: A review, Fuel Process. Technol. 2017, 159, 272-279, DOI: 10.1016/j.fuproc.2017.01.049.
  • [2] Liu L., Cai G., Zhang J., Liu X., Liu K., Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review, Renew. Sust. Energ. Rev. 2020, 126, 109831, DOI: 10.1016/j.rser.2020.109831.
  • [3] Formela K., Sustainable development of waste tires recycling technologies – recent advances, challenges and future trends, Adv. Ind. Eng. Polym. Res. 2021, 4, 209-222, DOI: 10.1016/j.aiepr.2021.06.004.
  • [4] Karakurt C., Microstructure properties of waste tire rubber 2015, 17, 422-433, DOI: 10.1007/S10163-014-0263-9.
  • [5] Moghaddamzadeh S., Rodrigue D., Rheological characterization of polyethylene/polyester recycled tire fibers/ground tire rubber composites, J. Appl. Polym. Sci. 2018, 135, 46563, DOI: 10.1002/app.46563.
  • [6] Hernández E.H., Gámez J.F.H., Cepeda L.F., Muñoz E.J.C., Corral F.S., Rosales S.G.S., Velazquez G.N., Morones P.G., Sanchez Martinez D.I., Sulfuric acid treatment of ground tire rubber and its effect on the mechanical and thermal properties of polypropylene composites, J. Appl. Polym. Sci. 2017, 134, 44858, DOI: 10.1002/app.44864.
  • [7] Orrit-Prat J., Mujal-Rosas R., Rahhali A., Marin-Genesca M., Colom-Fajula X., Belana-Punseti J., Dielectric and mechanical characterization of PVC composites with ground tire rubber, J. Compos. Mater. 2011, 45, 1233-1243, DOI: 10.1177/0021998310380289.
  • [8] Toncheva A., Brison L., Dubois P., Laoutid F., Recycled tire rubber in additive manufacturing: selective laser sintering for polymer-ground rubber composites, Appl. Sci. 2021, 11, 8778, DOI: 10.3390/app11188778.
  • [9] He M., Gu K., Wang Y., Li Z., Shen Z., Liu S., Wei J., Development of high-performance thermoplastic composites based on polyurethane and ground tire rubber by in-situ synthesis, Resour. Conserv. Recycl. 2021, 173, 105713, DOI: 10.1016/j.resconrec.2021.105713.
  • [10] Zedler Ł., Colom X., Saeb M.R., Formela K., Preparation and characterization of natural rubber composites highly filled with brewers’ spent grain/ground tire rubber hybrid reinforcement, Compos. B Eng. 2018, 145, 182-188, DOI: 10.1016/j.compositesb.2018.03.024.
  • [11] Araujo-Morera J., Verdugo-Manzanares R., González S., Verdejo R., Lopez-Manchado M.A., Hernández Santana M., On the use of mechano-chemically modified ground tire rubber (GTR) as recycled and sustainable filler in styrene-butadiene rubber (SBR) composites, J. Compos. Sci. 2021, 5, 68, DOI: 10.3390/jcs5030068.
  • [12] Hejna A., Korol J., Przybysz-Romatowska M., Zedler Ł., Chmielnicki B., Formela K., Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers – A review, Waste Manage. 2020, 108, 106-118, DOI: 10.1016/j.wasman.2020.04.032.
  • [13] Kosmela P., Olszewski A., Zedler Ł., Burger P., Piasecki A., Formela K., Hejna A., Ground tire rubber filled flexible polyurethane foam-effect of waste rubber treatment on composite performance, Materials 2021, 14, 3807, DOI: 10.3390/ma14143807.
  • [14] Piszczyk L., Hejna A., Formela K., Danowska M., Strankowski M., Rigid polyurethane foams modified with ground tire rubber – Mechanical, morphological and thermal studies, Cell. Polym. 2015, 34, 45-62, DOI: 10.1177/026248931503400201.
  • [15] Aoudia K., Azem S., Aït Hocine N., Gratton M., Pettarin V., Seghar S., Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin, Waste Manage. 2017, 60, 471-481, DOI: 10.1016/j.wasman. 2016.10.051.
  • [16] Karger-Kocsis J., Mészáros L., Bárány T., Ground tyre rubber (GTR) in thermoplastics, thermosets and rubbers, J. Mater. Sci. 2013, 48, 1-38, DOI: 10.1007/s10853-012-6564-2.
  • [17] Lo Presti D., Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review, Con. Build. Mat. 2013, 49, 863-881, DOI: 10.1016/j.conbuildmat.2013.09.007.
  • [18] Phiri M.M., Phiri M.J., Formela K., Hlangothi S.P., Chemical surface etching methods for ground tire rubber as sustainable approach for environmentally-friendly composites development – a review, Compos. B Eng. 2021, 204, 108429, DOI: 10.1016/j.compositesb.2020.108429.
  • [19] Fazli A., Rodrigue D., Recycling waste tires into ground tire rubber (GTR)/rubber compounds: A Review, J. Compos. Sci. 2020, 4, 103, DOI: 10.3390/jcs4030103.
  • [20] Zedler Ł., Przybysz-Romatowska M., Haponiuk J., Wang S., Formela K., Modification of ground tire rubber – promising approach for development of green composites, J. Compos. Sci. 2019, 4, 2, DOI: 10.3390/jcs4010002.
  • [21] Simon D.Á., Pirityi D.Z., Bárány T., Devulcanization of ground tire rubber: microwave and thermomechanical approaches, Sci. Rep. 2020, 10, 16587, DOI: 10.1038/s41598-020-73543-w.
  • [22] Garcia P.S., de Sousa F.D.B., de Lima J.A., Cruz S.A., Scuracchio C.H., Devulcanization of ground tire rubber: Physical and chemical changes after different microwave exposure times, Express Polym. Lett. 2015, 9, 1015-1026, DOI: 10.3144/expresspolymlett.2015.91.
  • [23] Mangili I., Collina E., Anzano M., Pitea D., Lasagni M., Characterization and supercritical CO<sub>2 </sub> devulcanization of cryo-ground tire rubber: Influence of devulcanization process on reclaimed material, Polym. Degrad. Stab. 2014, 102, 15-24, DOI: 10.1016/j.polymdegradstab.2014.02.017.
  • [24] Gągol M., Boczkaj G., Haponiuk J., Formela K., Investigation of volatile low molecular weight compounds formed during continuous reclaiming of ground tire rubber, Polym. Degrad. Stab. 2015, 119, 113-120, DOI: 10.1016/j.polymdegradstab.2015.05.007.
  • [25] Zedler Ł., Kowalkowska-Zedler D., Vahabi H., Saeb M.R., Colom X., Cañavate J., Wang S., Formela K., Preliminary investigation on auto-thermal extrusion of ground tire rubber, Materials 2019, 12, 2090, DOI: 10.3390/ma12132090.
  • [26] Hejna A., Olszewski A., Zedler Ł., Kosmela P., Formela K., The impact of ground tire rubber oxidation with H2O2 and KMnO4 on the structure and performance of flexible polyurethane/ground tire rubber composite foams, Materials 2021, 14, 499, DOI: 10.3390/ma14030499.
  • [27] Wiśniewska P., Zedler Ł., Formela K., Processing, performance properties, and storage stability of ground tire rubber modified by dicumyl peroxide and ethylene-vinyl acetate copolymers, Polymers 2021, 13, 4014, DOI: 10.3390/polym13224014.
  • [28] Kosmela P., Olszewski A., Zedler Ł., Hejna A., Burger P., Formela K., Structural changes and their implications in foamed flexible polyurethane composites filled with rapeseed oil-treated ground tire rubber, J. Compos. Sci. 2021, 5, 90, DOI: 10.3390/jcs5030090.
  • [29] Wiśniewska P., Zedler Ł., Marć M., Klein M., Haponiuk J., Formela K., Ground tire rubber modified by elastomers via low-temperature extrusion process: physico-mechanical properties and volatile organic emission assessment, Polymers 2022, 14, 546, DOI: 10.3390/polym14030546.
  • [30] Hejna A., Barczewski M., Skórczewska K., Szulc J., Chmielnicki B., Korol J., Formela K., Sustainable upcycling of brewers’ spent grain by thermo-mechanical treatment in twin-screw extruder, J. Clean. Prod. 2021, 285, 124839, DOI: 10.1016/j.jclepro.2020.124839.
  • [31] Suparno M., Dolan K.D., Ng P.K.W., Steffe J.F., Average shear rate in a twin-screw extruder as a function of degree of fill, flow behavior index, screw speed and screw configuration, J. Food Process. Eng. 2011, 34, 961-982, DOI: 10.1111/j.1745-4530.2009.00381.x.
  • [32] Marć M., Emissions of selected monoaromatic hydrocarbons as a factor affecting the removal of single-use polymer barbecue and kitchen utensils from everyday use, Sci. Total Environ. 2020, 720, 137485, DOI: 10.1016/j.scitotenv.2020.137485.
  • [33] Simon D.Á., Pirityi D., Tamás‐Bényei P., Bárány T., Microwave devulcanization of ground tire rubber and applicability in SBR compounds, J. Appl. Polym. Sci. 2020, 137, 48351, DOI: 10.1002/app.48351.
  • [34] Zedler Ł., Kowalkowska-Zedler D., Colom X., Cañavate J., Saeb M.R., Formela K., Reactive sintering of ground tire rubber (GTR) modified by a trans-polyoctenamer rubber and curing additives, Polymers 2020, 12, 3018, DOI: 10.3390/polym12123018.
  • [35] Zhang X., Lu Z., Tian D., Li H., Lu C., Mechanochemical devulcanization of ground tire rubber and its application in acoustic absorbent polyurethane foamed composites, J. Appl. Polym. Sci. 2013, 127, 4006-4014, DOI: 10.1002/app.37721.
  • [36] Andersons J., Kirpluks M., Cabulis P., Kalnins K., Cabulis U., Bio-based rigid high-density polyurethane foams as a structural thermal break material, Constr. Build. Mater. 2020, 260, 120471, DOI: 10.1016/j.conbuildmat.2020.120471.
  • [37] Olszewski A., Kosmela P., Piasecki A., Żukowska W., Szczepański M., Wojtasz P., Barczewski M., Barczewski R., Hejna A., Comprehensive investigation of stoichiometry-structure-performance relationships in flexible polyurethane foams, Polymers 2022, 14, 3813, DOI: 10.3390/polym 14183813.
  • [38] Lee C.S., Ooi T.L., Chuah C.H., Ahmad S., Effect of isocyanate index on physical properties of flexible polyurethane foams, Malaysia. J. Sci. 2007, 26, 91-98.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7af3689a-cc8d-4ae0-ac9a-db1401cdf35c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.