Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | nr 6 | 290--304
Tytuł artykułu

Zautomatyzowany model numeryczny służący do kontroli procesu drążeniu tunelu tarczą EPB

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Numerical model for control of the EPB tunnelling technology
Języki publikacji
PL
Abstrakty
PL
Trójwymiarowy model numeryczny służący do analizy procesu drążenia tunelu tarczą wyrównanych ciśnień gruntowych (ang. Earth Pressure Balance – EPB). Automatyzacja tworzenia modelu numerycznego oraz odczytywania wyników analiz przez wykorzystanie autorskiego skryptu Python. Weryfikacja modelu na rzeczywistym przypadku niebieskiej linii metra projektu MRTA w Bangkoku. Ilościowe określenie wpływu zwiększonej objętości urabianego gruntu, ciśnienia wypełnienia pustki w ogonie tarczy oraz ciśnienia podparcia przodka na deformacje ośrodka gruntowego oraz siły wewnętrzne w obudowie tunelu. Rozwój mechanizmów w czasie oraz ich zmiana wywołana działaniem procesów technologicznych.
EN
A three-dimensional numerical model for the analysis of tunnelling carried out with the Earth Pressure Balance (EPB) shield. The Python script for automation of numerical modelling and extraction of results. Verification of the introduced model based on the MRTA blue line project in Bangkok. Quantification of the effects related with the excessive overcut, tail void backfilling pressure and face support pressure. Development of induced mechanisms in time together with their modifications due to manipulation of the technology parameters.
Wydawca

Rocznik
Tom
Strony
290--304
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Politechnika Śląska w Gliwicach, Wydział Budownictwa
autor
  • Politechnika Śląska w Gliwicach, Wydział Budownictwa
autor
  • Universita degi Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica
Bibliografia
  • 1. Ahmad A.: Parallel programming in the finite element method. [W:] Proceedings of Failure of engineering Materials and Structures. UET Taxila, 2007, 87-93.
  • 2. Ashford S. A., Jakrapiyanum W., Lukkanaprasit P.: Amplification of earthquake ground motions in Bangkok. Research report, Asian Institute of Technology, submitted to the Public Works Department, Thailand, 1996.
  • 3. Attewell, P. B., Woodman, J. P.: Predicting the dynamics of ground settlement and its derivatives caused by tunnelling in soil. Ground Engineering 15 (8), 1982, 13-36.
  • 4. Balasubramaniam, A. S., Chaudhry, A. R., Hwang, M., Uddin, W., Li, Y. G.: State boundary surface for weathered and soft Bangkok Clay. Australian Geomechanics Journal 6 (1), 1976, 43-50.
  • 5. Balasubramaniam, A. S., Hwang, Z.-M.: Yielding of weathered Bangkok clay. Soils and Foundations 20 (2), 1980, 1-15.
  • 6. Balasubramaniam, A., Hwang, Z., Waheed, U., Chaudhry, A., Li, Y.: Critical state parameters and peak stress envelopes for Bangkok clays. Quarterly Journal of Engineering Geology 1, 1978, 219-232.
  • 7. Balasubramaniam, B., Oh, E., Lee, C. J., Handali, S., Seah, T. H.: A more fundamental approach to predict pore pressure for soft clay. Lowland Technology International 9 (1), 2007, 11-17.
  • 8. Bezuijen, A.: Bentonite and grout flow around a TBM. W: Underground Space – The 4th Dimension of Metropolises. Taylor & Francis, 2007, 383-388.
  • 9. CEB-FIB: Model Code. Bulletind‘Information. CEM, Lausanne, Switzerland, 1990.
  • 10. Do: 3d modelling for mechanized tunnelling in soft ground-influence of the constitutive model. American Journal of Applied Sciences 10 (8), 2013, 863-875.
  • 11. Dong, N.P.: In-situ Investigation of Soft and Stiff Clay in Bangkok. Master’s thesis, Asian Institute of Technology, Bangkok, Tajlandia, 1998.
  • 12. Gudehus, G., Amorosi, A., Gens, A., Herle, I., Kolymbas, D., Masin, D., Wood, D. M., Niemunis, A., Nova, R., Pastor, M., Tamagnini, C., Viggiani, G.: The soilmodels.info project. International Journal for Numerical and Analytical Methods in Geomechanics 32 (12), 2008, s. 1571-1572.
  • 13. Gunn, M. J.: The prediction of surface settlement profiles due to tunnelling. W: Houlsby, G. T., Schofield, A. N. (Eds.), Predictive soil mechanics. Proceedings of the Wroth memorial symposium, 27-29 July 1992, St. Catherine’s College, Oxford. Thomas Telford, 1993, 304-316.
  • 14. Hassan, Z.: Stress-strain behaviour and shear strength characteristics of stiff Bangkok Clays. Master’s thesis, Asian Institute of Technology, Bangkok, Thailand, 1976.
  • 15. Herzog, M.: Die setzungsmulde ber seicht liegenden tunneln. Bautechnik 62 (11), 1985, 375-377.
  • 16. Hibbitt, K., Sorensen : ABAQUS/Standard User’s Manual. ABAQUS/Standard User’s Manual. Hibbitt, Karlsson & Sorensen, 2001.
  • 17. Kasper, T., Meschke, G.: A 3D finite element simulation model for TBM tunnelling in soft ground. International Journal for Numerical and Analytical Methods in Geomechanics 28 (14), 2004, 1441-1460.
  • 18. kdm.cyfronet.pl,: Zeus GPGPU. [Accessed: 22-October-2015], 2015.
  • 19. Kolymbas, D.: Tunnelling and Tunnel Mechanics: A Rational Approach to Tunnelling. Springer, 2008.
  • 20. Lambrughi, A., Rodrı́guez, L. M., Castellanza, R.: Development and validation of a 3D numerical model for TBM–EPB mechanised excavations. Computers and Geotechnics 40, 2012, 97-113.
  • 21. Lanier, J., Caillerie, D., Chambon, R., Viggiani, G., Besuelle, P., Desrues, J.: A general formulation of hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics 28 (15), 2004, 1461-1478.
  • 22. Likitlersuang, S., Teachavorasinskun, S., Surarak, C., Oh, E., Balasubramaniam, A.: Small strain stiffness and stiffness degradation curve of Bangkok clays. Soils and Foundations 53 (4), 2013, 498-509.
  • 23. Maidl, B., Herrenknecht, M., Maidl, U., Wehrmeyer, G.: Mechanised Shield Tunnelling. Ernst & Sohn, 2012.
  • 24. Mair, R. J., Taylor, R. N.: Bored tunnelling in the urban environment. W: Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering. Vol. 4. A A Balkema, 1997, 2353–2385.
  • 25. Mašı́n, D.: A hypoplastic constitutive model for clays. International Journal for Numerical and Analytical Methods in Geomechanics 29 (4), 2005, 311-336.
  • 26. Mayne, P. W., Kulhawy, F. H., 1982. K 0 - OCR Relationships in Soil. Journal of the Geotechnical Engineering Division 108 (6), 851-872.
  • 27. Meschke, G., Kropik, C., Mang, H. A.: Numerical analyses of tunnel lining by means of a viscoplastic material model for shotcrete. International Journal for Numerical Methods in Engineering 39 (18), 1996, 3145-3162.
  • 28. Müeller-Kirchenbauer, H.: Stability of slurry trenches in inhomogeneous subsoil. W: Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. Vol. 2. Tokyo, 1977, 125-132.
  • 29. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-frictional Materials 2 (4), 1997, 279-299.
  • 30. O’Reilly, M., New, B.: Settlements above tunnels in the United Kingdom, their magnitude and prediction. W: Proceedings of Tunnelling ’82. Brighton, 1982, 173-181.
  • 31. Ochmański, M., Modoni, G., Bzówka, J.: Numerical analysis of tunnelling with jet-grouted canopy. Soils and Foundations 55 (5), 2015, 929-942.
  • 32. Peck, R. B.: Deep excavations and tunnelling in soft ground. W: Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, 1969, 225-290.
  • 33. Pilgrim, M.: Dive Into Python. Apress, 2004.
  • 34. Seah, T. H., Koslanant, S.: Anisotropic consolidation behavior of soft bangkok clay. Geotechnical Testing Journal 26 (3), 2003.
  • 35. Sirivachiraporn, A., Phienwej, N.: Ground movements in EPB shield tunneling of Bangkok subway project and impacts on adjacent buildings. Tunnelling and Underground Space Technology 30, 2012, 10-24.
  • 36. SoilModels Hub for Geotechnical Professionals [online]. Praga: Charles University in Prague, [dostęp: 25-10-2017]. Dostępny w Internecie: www.soilmodels.com, 2007
  • 37. Surarak, C.:. Geotechnical Aspects of the Bangkok MRT Blue Line Project. Ph.D. thesis, Griffith School of Engineering, Brisbane, 2010.
  • 38. Suwansawat, S.: Earth Pressure Balance (EPB) Shield Tunneling in Bangkok: Ground Response and Prediction of Surface Settlements Using Artifical Neural Networks. Ph.D. thesis, Massachusetts Institute of Technology, 2002.
  • 39. Suwansawat, S., Einstein, H. H.: Describing settlement troughs over twin tunnels using a superposition technique. Journal of Geotechnical and Geoenvironmental Engineering 133 (4), 2007, 445-468.
  • 40. Teachavorasinskun, S., Lukkunaprasit, P.: A simple correlation for shear wave velocity of soft Bangkok clays. Géotechnique 54(5), 2004, 323-326.
  • 41. Theramast, N.: Characterisation of Pseudo-Elastic Shear Modulus and Shear Strength of Bangkok Clay. Master’s thesis, Asian Institute of Technology, Bangkok, 1998.
  • 42. Viana da Foneseca, A., Topa Gomes, A.: A tunnel collapse on the construction in metro do porto: solutions for optimization of advance control parameters of a EPB TBM. W: XXV Konferencja Naukowo-Techniczna, 2011, 201-228.
  • 43. von Wolffersdorff, P. A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-frictional Materials 1 (3), 1996, 251-271, .
  • 44. Warnitchai, P., Sangarayakul, C., Ashford, S. A.: Seismic hazard in Bangkok due to long-distance earthquakes. In: The 12th World Conference on Earthquake Engineering, Madryt. A. A. Balkema, 1996, 2145-2153.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7ae9a930-eb91-47a6-b0b4-c6624879a5ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.