Warianty tytułu
Języki publikacji
Abstrakty
A novel methodology was implemented in the present study to concurrently control power conversion efficiency (η) and durability (D) of co-sensitized dye solar cells. Applying response surface methodology (RSM) and Desirability Function (DF), the main influential assembling (dye volume ratio and anti-aggregation agent concentration) and operational (performance temperature) parameters were systematically changed to probe their main and interactive effects on the η and D responses. Individual optimization based on RSM elucidated that D can be solely controlled by changing the ratio of vat-based organic photosensitizers, whereas η takes both effects of dye volume ratio and anti-aggregation concentration into account. Among the studied factors, the performance temperature played the most vital role in η and D regulation. In particular, however, multi-objective optimization by DF explored the degree to which one should be careful about manipulation of assembling and operational parameters in the way maximization of performance of a co-sensitized dye solar cell.
Czasopismo
Rocznik
Tom
Strony
229--237
Opis fizyczny
Bibliogr. 38 poz., il., tab., wykr.
Twórcy
autor
- Department of Organic Colorants, Institute for Color Science and Technology, P.O. Box 16656118481, Tehran, Iran, hosseinnezhad-mo@icrc.ac.ir
autor
- Department of Industrial Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Mashhad, Iran
autor
- Department of Resin and Additive, Institute for Color Science and Technology, P.O. Box 16656118481, Tehran, Iran, saeb-mr@icrc.ac.ir
autor
- Petrochemical Research and Technology Company (NPC-rt), National Petrochemical Company (NPC), P.O. Box 14358-84711, Tehran, Iran
Bibliografia
- [1] B. O’Regan, M. Gratzel, A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737–740.
- [2] N. Asim, K. Sopian, S. Ahmadi, K. Saeedfar, M.A. Alghoul, O. Saadatian, S.H. Zaidi, A review on the role of materials science in solar cells, Renew. Sustain. Energy Rev. 16 (2012) 5834–5847.
- [3] M. Gratzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C: Photochem. Rev. 4 (2003) 145–153.
- [4] X. Wang, Z.M. Wang, High Efficiency Solar Cells: Physics, Materials and Devices, Springer, Switzerland, 2014.
- [5] J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials, Renew. Sustain. Energy Rev. 16 (2012) 5848–5860.
- [6] G.J. Conibeer, A. Willoughby, Solar Cell Materials Developing Technology, John Wiley & Sons, United Kingdom, 2014.
- [7] G.D. Sharma, P.A. Angaridis, S. Pipou, G.E. Zervaki, V. Nikolaou, R. Misra, A.G. Coutsolelos, Efficient co-sensitization of dye-sensitized solar cells by novel porphyrin/triazine dye and tertiary aryl-amine organic dye, Org. Electron. 25 (2015) 295–307.
- [8] M. Hosseinnezhad, S. Moradian, K. Gharanjig, Investigation of effect of anti-aggregation agent on the performance of nanostructure dye-sensitized solar cells, Opto-Electron. Rev. 23 (2015) 126–130.
- [9] A.R.K. Selvaraj, S. Hayase, Molecular dynamics simulations on the aggregation behavior of indole type organic dye molecules in dye-sensitized solar cells, J. Mol. Model. 18 (2012) 2099–2104.
- [10] T. Daeneke, A.J. Mozer, T. Kwon, N.W. Duffy, A.B. Holmes, U. Bach, L. Spiccia, Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators, Energy Environ. Sci. 5 (2012) 7090–7099.
- [11] M. Mishra, M.K.R. Fischer, P. Bauerle, Metal free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules, Angew. Chem. Int. Ed. 48 (2009) 2474–2499.
- [12] M. Hosseinnezhad, S. Moradian, K. Gharanjig, Novel organic dyes based on thioindigo for dye-sensitized solar cells, Dyes Pigm. 123 (2015) 147–153.
- [13] J. Yum, E. Baranoff, S. Wenger, M.K. Nazeeruddin, M. Gratzel, Panchromatic engineering for dye-sensitized solar cells, Energy Environ. Sci. 4 (2011) 842–857.
- [14] Q. Shen, Y. Ogomi, B. Park, T. Inoue, S.S. Pandey, A. Miyamoto, S. Fujita, K. Katayama, T. Toyod, S. Hayase, Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells, Phys. Chem. Chem. Phys. 14 (2012) 4605–4613.
- [15] A. Baheti, P. Singh, C. Lee, K.R.J. Thomas, K. Ho, 2,7-Diaminofluorene-based organic dyes for dye-sensitized solar cells: effect of auxiliary donor on optical and electrochemical properties, J. Org. Chem. 76 (2011) 4910–4920.
- [16] J. Chang, C.P. Lee, D. Kumar, P.W. Chen, L.Y. Lin, K.R.J. Thomas, K.C. Ho, Co-sensitized solar cells using unsymmetrical squarain dyes and novel pyrenoimidazole-based dye, J. Power Sources 240 (2013) 779–785.
- [17] N.T.R.N. Kumara, P. Ekanayake, A. Lim, L.Y.C. LIew, M. Iskandar, L.C. Ming, G.K.R. Senadeera, Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells, J. Alloys Compd. 581 (2013) 186–191.
- [18] E.M. Barea, J. Bisquert, Properties of chromophores determining recombination at the TiO2-dye-electrolyte interface, Langmuir 29 (2013) 877–878.
- [19] M. Hosseinnezhad, K. Gharanjig, S. Moradian, Effect of anti-aggregation agent on photovoltaic performance of indoline sensitized solar cells, Mater. Technol. 30 (2015) 189–192.
- [20] M. Berginc, U. Opara Krasovec, M. Hocevar, M. Topic, Performance of dye-sensitized solar cells based on ionic liquids: effect of temperature and iodine concentration, Thin Solid Films 516 (2008) 7155–7159.
- [21] H. Takada, Y. Obana, R. Sasaki, M. Kuribayashi, M. Kanno, C. Zhu, T. Bessho, Y. Takagi, K. Hinokuma, K. Noda, Improved durability of dye-sensitized solar cells with H2-reduced carbon counter electrode, J. Power Source 274 (2015)1276–1282.
- [22] L. Lin, C. Lee, R. Vittal, K. Ho, Improving the durability of dye-sensitized solar cells through back illumination, J. Power Source 196 (2011) 1671–1676.
- [23] M. Hosseinnezhad, Improvement performance of dye sensitised solar cells from co-sensitisation of TiO2 electrode with organic dyes based on indigo and thioindigo, Mater. Technol. 31 (2016) 348–351.
- [24] J. Li, C. Ma, Y. Li, W. Zhou, P. Xu, Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production, Appl. Microbiol. Biotechnol. 74 (2007) 563–571.
- [25] E. Roszet, V. Wascotte, N. Lecouturier, V. Preat, W. Dewe, B. Boulanger, Ph. Hubert, Improvement of the decision efficiency of the accuracy profile by means of a desirability function for analytical methods validation: application to a diacetyl-monoxime colorimetric assay used for the determination of urea in transdermal iontophoretic extracts, Anal. Chim. Acta 591 (2007) 239–247.
- [26] M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, A. Taitai, Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box-Behnken design and desirability function, Appl. Surf. Sci. 258 (2012) 4402–4410.
- [27] M. Hosseinnezhad, S. Moradian, K. Gharanjig, Synthesis and characterization of two new organic dyes for dye-sensitized solar cells, Synth. Commun. 44 (2014) 779–787.
- [28] D.C. Montgomery, Design and Analysis of Experiments, 6th ed., Wiley, New York, 2005.
- [29] M.R. Saeb, M. Moghri, H.A. Khonakdar, U. Wagenknecht, G. Heinrich, Fusion level optimization of rigid PVC nanocompounds by using response surface methodology, J. Vinyl Addit. Technol. 19 (2013) 168–176.
- [30] M. Moghri, M. Khakpour, M. Akbarian, M.R. Saeb, Employing response surface approach for optimization of fusion characteristics in rigid foam PVC/clay nanocomposites, J. Vinyl Addit. Technol. 21 (2015) 51–59.
- [31] A.S. Pakdel, M.R. Behbahani, M.R. Saeb, H.A. Khonakdar, H. Abedini, M. Moghri, Evolution of vinyl chloride conversion below critical micelle concentration: a response surface analysis, J. Vinyl Addit. Technol. 21 (2015) 157–165.
- [32] M. Ataeefard, M.R. Saeb, A multiple process optimization strategy for manufacturing environmentally friendly printing toners, J. Clean. Prod. 108 (2015) 121–130.
- [33] N.R. Costa, J. Lourenco, Z.L. Pereira, Desirability function approach: a review and performance valuation in adverse conditions, Chemom. Intell. Lab. 107 (2011) 234–244.
- [34] C. Cojocaru, M. Khayet, G. Zakrzewska-Trznadel, A. Jaworska, Modelling and multi-response optimization of pervaporation of organic aqueous solutions using desirability function approach, J. Hazard. Mater. 167 (2009) 52–63.
- [35] K. Elsayed, C. Lacor, CFD modelling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms, Appl. Math. Model. 37 (2013) 5680–5704.
- [36] M. Hosseinnezhad, S. Moradian, K. Gharanjig, Acid azo dyes for efficient molecular photovoltaic study of dye-sensitized solar cells performance, Prog. Color Colorants Coat. 9 (2016) 61–70.
- [37] C. Lan, H. Wu, T. Pan, C. Chang, W. Chao, C. Chen, C. Wang, C. Lin, E. Diau, Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells, Energy Environ. Sci. 5 (2012) 6460–6464.
- [38] S.M. Shinda, D.C. Montgomery, B. Jones, Projection of no-confounding designs for six, seven and eight factors in 16 runs, Int. J. Exp. Des. Proc. Optim. 4 (2014) 1–26.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7ae2804f-cfa1-4b1f-ba45-1824bd262822