Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
In response to global initiatives to reduce greenhouse gas emissions, the maritime industry must adopt green propulsion solutions. This paper analyses the operational potential of very high-temperature reactors (VHTRs) as an innovative propulsion source for large container ships. Calculations are carried out for ships produced between 2018 and 2020 with a capacity of more than 20,000 TEU. For these ships, the average power of the main system is calculated at around 64.00 kW. The study focuses on a propulsion engine system with features such as extraction control, bypass control, and either one or two turbines. The direct thermodynamic cycle of the VHTR offers high efficiency, smaller sizes, and flexible power control, thus eliminating the need for helium storage and enabling rapid power changes. In addition, this article highlights the advantages of bypass control of the turbine, which avoids the need to shut down the propulsion engine in the harbour. The findings suggest that nuclear propulsion could play a crucial role in the future of maritime technology.
Czasopismo
Rocznik
Tom
Strony
76--88
Opis fizyczny
Bibliogr. 50, rys., tab.
Twórcy
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Poland, marta.drosinska@pg.edu.pl
autor
- Gdańsk University of Technology, Doctoral School, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Poland
Bibliografia
- 1. Ertesvag IS, Madejski P, Ziołkowski P, Mikielewicz D. Exergy analysis of a negative CO2 emission gas power plant based on water oxy-combustion of syngas from sewage sludge gasification and CCS. Energy 2023, 278:127690. https://doi.org/10.1016/j.energy.2023.127690.
- 2. Bąk K, Ziołkowski P, Frost J, Drosińska-Komor M. Comparative study of a combined heat and power plant retrofitted by CO2 capture during the combustion of syngas from sewage sludge gasification versus zero-emission combustion of hydrogen produced using renewables. Int J Hydrogen Energy 2023, 48:39625–40. https://doi.org/10.1016/j.ijhydene.2023.07.322.
- 3. Ziołkowski P, Szewczuk-Krypa N, Butterweck A, Stajnke M, Głuch S, Drosińska-Komor M, et al. Comprehensive thermodynamic analysis of steam storage in a steam cycle in a different regime of work: A zero-dimensional and three-dimensional approach. J Energy Resour Technol 2021, 143:1–27. https://doi.org/10.1115/1.4052249.
- 4. Papadis E, Tsatsaronis G. Challenges in the decarbonization of the energy sector. Energy 2020, 205:118025. https://doi.org/10.1016/j.energy.2020.118025.
- 5. Baste IA, Watson RT. Tackling the climate, biodiversity and pollution emergencies by making peace with nature 50 years after the Stockholm Conference. Glob Environ Chang 2022, 73:102466. https://doi.org/10.1016/j.gloenvcha.2022.102466.
- 6. Montoro-Ramirez EM, Parra-Anguita L, Alvarez-Nieto C, Parra G, Lopez-Medina I. Effects of climate change in the elderly’shealth: a scoping review protocol. BMJ Open 2022, 12:e058063. https://doi.org/10.1136/bmjopen-2021-058063.
- 7. Cifuentes-Faura J. European Union policies and their role in combating climate change over the years. Air Qual Atmos Heal 2022, 15:1333–40. https://doi.org/10.1007/s11869-022-01156-5.
- 8. Cloete S, Ruhnau O, Hirth L. ScienceDirect On capital utilization in the hydrogen economy : The quest to minimize idle capacity in renewables- rich energy systems. Int J Hydrogen Energy 2020, 46:169–88. https://doi.org/10.1016/j.ijhydene.2020.09.197.
- 9. Cownden R, Mullen D, Lucquiaud M. Towards net-zero compatible hydrogen from steam reformation – Technoeconomic analysis of process design options. Int J Hydrogen Energy 2023, 48:14591–607. https://doi.org/10.1016/j.ijhydene.2022.12.349.
- 10. Szturgulewski K, Głuch J, Drosińska-Komor M, Ziołkowski P, Gardzilewicz A, Brzezińska-Gołębiewska K. Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions. Energy 2024, 299:131382. https://doi.org/10.1016/j.energy.2024.131382.
- 11. Olszewski W, Dzida M, Nguyen VG, Cao DN. Reduction of CO 2 Emissions from Offshore Combined Cycle Diesel Engine-Steam Turbine Power Plant Powered by Alternative Fuels. Polish Marit Res 2023, 30:71–80. https://doi.org/10.2478/pomr-2023-0040.
- 12. Duwe M, Graichen J, Bottcher H. Can current EU climate policy reliably achieve climate neutrality by 2050? 2023.
- 13. No Title n.d. https://climate.ec.europa.eu/eu-action/transportemissions/reducing-emissions-shipping-sector_pl (accessed 20 August 2023).
- 14. Sumin M. Challenges of implementing sustainable solutions in commercial shipping. Arcada University of Applied Sciences: International Business, 2023.
- 15. Deng W, Zhang X, Zhou Y, Liu Y, Zhou X, Chen H, et al. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Inf Sci (Ny) 2022, 585:441–53. https://doi.org/10.1016/j.ins.2021.11.052.
- 16. Backstrand K. Towards a Climate-Neutral Union by 2050? The European Green Deal, Climate Law, and Green Recovery. Routes to a Resilient Eur. Union, Cham: Springer International Publishing; 2022, p. 39–61. https://doi.org/10.1007/978-3-030-93165-0_3.
- 17. Szewczuk-Krypa N, Grzymkowska A, Głuch J. Comparative Analysis of Thermodynamic Cycles of Selected Nuclear Ship Power Plants with High-Temperature Helium-Cooled Nuclear Reactor. Polish Marit Res 2018, 25:218–24. https://doi.org/10.2478/pomr-2018-0045.
- 18. Szewczuk-Krypa N, Drosińska-Komor M, Głuch J, Breńkacz Ł. Comparison Analysis of Selected Nuclear Power Plants Supplied with Helium from High-Temperature Gas-Cooled Reactor. Polish Marit Res 2018, 25:204–10. https://doi.org/10.2478/pomr-2018-0043.
- 19. Drosińska-Komor M, Głuch J, Breńkacz Ł, Ziołkowski P. On the Use of Selected 4th Generation Nuclear Reactors in Marine Power Plants. Polish Marit Res 2022, 29:76–84. https://doi.org/10.2478/pomr-2022-0008.
- 20. Significant Ships of 2018, The Royal Institution of Naval Architects, 2019. n.d.
- 21. Significant Ships of 2019, The Royal Institution of Naval Architects, 2020. n.d.
- 22. Significant Ships of 2020, The Royal Institution of Naval Architects, 2021. n.d.
- 23. Gutowska I, Woods BG, Cadell SR. CFD modeling of the OSU High Temperature Test Facility inlet plenum flow distribution during normal operation. Nucl Eng Des 2019, 353:110216. https://doi.org/10.1016/j.nucengdes.2019.110216.
- 24. Kadak AC. The Status of the US High-Temperature Gas Reactors. Engineering 2016, 2:119–23. https://doi.org/10.1016/J. ENG.2016.01.026.
- 25. Forsberg CW. Roadmap of Graphite Moderator and Graphite-Matrix TRISO Fuel Management Options. Nucl Technol 2024, 210:1623–38. https://doi.org/10.1080/00295450.2024.2337311.
- 26. Trela M, Kwidziński R, Głuch J, Butrymowicz D. Analysis of application of feed-water injector heaters to steam power plants. Polish Marit Res 2009, 16:64–70. https://doi.org/10.2478/v10012-008-0047-z.
- 27. Alzayedi AMT, Batra A, Sampath S, Pilidis P. Techno-Environmental Mission Evaluation of Combined Cycle Gas Turbines for Large Container Ship Propulsion. Energies 2022, 15:4426. https://doi.org/10.3390/en15124426.
- 28. Niksa-Rynkiewicz T, Witkowska A, Głuch J, Adamowicz M. Monitoring the Gas Turbine Start-Up Phase on a Platform Using a Hierarchical Model Based on Multi-Layer Perceptron Networks. Polish Marit Res 2022, 29:123–31. https://doi.org/10.2478/pomr-2022-0050.
- 29. Błaszczyk A, Głuch J, Gardzilewicz A. Operating and economic conditions of cooling water control for marine steam turbine condensers. Polish Marit Res 2011, 18:48–54. https://doi.org/10.2478/v10012-011-0017-8.
- 30. Dostal V, Driscoll M., Hejzlar P. A supercritical carbon dioxide cycle for next generation nuclear reactors, MIT-ANP-TR-100, advanced nuclear power technology program report. Cambridge (MA): Massachusetts Institute of Technology. 2004.
- 31. Kotowicz J, Brzęczek M, Job M. The thermodynamic and economic characteristics of the modern combined cycle power plant with gas turbine steam cooling. Energy 2018, 164:359–76. https://doi.org/10.1016/j.energy.2018.08.076.
- 32. Badur J, Lemański M, Kowalczyk T, Ziołkowski P, Kornet S. Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles. Energy 2018, 158:128–38. https://doi.org/10.1016/j.energy.2018.05.203.
- 33. Kugeler, K., Nabielek H, Buckthorpe D. The High Temperature Gas-cooled Reactor: Safety considerations of the (V)HTRModul. European Atomic Energy Community; 2017. https://doi.org/10.2760/270321.
- 34. Głuch J, Krzyżanowski J. New attempt for diagnostics of the geometry deterioration of the power system based on thermal measurement. Proc. ASME Turbo Expo 2006, vol. 2, Barcelona: 2006, p. 531–9.
- 35. Głuch J. Selected problems of determining an efficient operation standard in contemporary heat-and-flow diagnostics. Polish Marit Res 2009, 16:22–6. https://doi.org/10.2478/v10012-008-0040-6.
- 36. Breńkacz Ł. Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications (Wiley-ASME Press Series). 2021.
- 37. Sato H, Yan XL, Tachibana Y, Kunitomi K. GTHTR300 –A nuclear power plant design with 50% generating efficiency. Nucl Eng Des 2014, 275:190–6. https://doi.org/10.1016/j.nucengdes.2014.05.004.
- 38. Freire LO, De Andrade DA. Historic survey on nuclear merchant ships. Nucl Eng Des 2015, 293:176–86. https://doi.org/10.1016/j.nucengdes.2015.07.031.
- 39. Islam Rony Z, Mofijur M, Hasan MM, Rasul MG, Jahirul MI, Forruque Ahmed S, et al. Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals. Fuel 2023, 338:127220. https://doi.org/10.1016/j.fuel.2022.127220.
- 40. Alam SB, de Oliveira RGG, Goodwin CS, Parks GT. Coupled neutronic/thermal-hydraulic hot channel analysis of high power density civil marine SMR cores. Ann Nucl Energy 2019, 127:400–11. https://doi.org/10.1016/j.anucene.2018.12.031.
- 41. Freitas Neto LG de, Freire LO, Dos Santos A, De Andrade DA. Potential advantages of molten salt reactor for merchant ship propulsion. Brazilian J Radiat Sci 2021, 9:1–18. https://doi.org/10.15392/bjrs.v9i2b.1466.
- 42. Garcia RF, Carril JC, Catoira AD, Gomez JR. Efficiency enhancement of GT-MHRs applied on ship propulsion plants. Nucl Eng Des 2012, 250:326–33. https://doi.org/10.1016/j.nucengdes.2012.06.013.
- 43. Kim ES, Oh CH, Sherman S. Simplified optimum sizing and cost analysis for compact heat exchanger in VHTR. Nucl Eng Des 2008, 238:2635–47. https://doi.org/10.1016/j.nucengdes.2008.05.012.
- 44. Gutowska I, Woods BG, Halsted J. Developing PCC and DCC integral effects test experiments at the High Temperature Test Facility. Front Energy Res 2023, 11:1–15. https://doi.org/10.3389/fenrg.2023.1088070.
- 45. Kowalczyk T, Głuch J, Ziołkowski P. Analysis of Possible Application of High-Temperature Nuclear Reactors to Contemporary Large-Output Steam Power Plants on Ships. Polish Marit Res 2016, 23:32–41. https://doi.org/10.1515/pomr-2016-0018.
- 46. Park MY, Kim ES. Thermodynamic evaluation on the integrated system of VHTR and forward osmosis desalination process. Desalination 2014, 337:117–26. https://doi.org/10.1016/j.desal.2013.11.023.
- 47. Ueta S, Aihara J, Sawa K, Yasuda A, Honda M, Furihata N. Development of high temperature gas-cooled reactor (HTGR) fuel in Japan. Prog Nucl Energy 2011, 53:788–93. https://doi.org/10.1016/j.pnucene.2011.05.005.
- 48. Locatelli G, Mancini M, Todeschini N. Generation IV nuclear reactors: Current status and future prospects. Energy Policy 2013, 61:1503–20. https://doi.org/10.1016/j.enpol.2013.06.101.
- 49. Yan XL. Very high-temperature reactor. In: Pioro IL, editor. Handb. Gener. IV Nucl. React. Woodhead P, Elsevier; 2016, p. 55–90. https://doi.org/10.1016/B978-0-08-100149-3.00003-3.
- 50. Klisińska M. Wysokotemperaturowe Reaktory VHTR – Geneza, Badania, Status. Perspektywy Zastosowania. vol. 2008. n.d.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7abae5a4-b2dd-48f4-97d9-728ea2f9ce5f