Czasopismo
2018
|
Vol. 98, nr 1
|
57--69
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This study proposes a communication assisted fuzzy based adaptive protective relaying scheme for fault detection, fault classification and faulty phase identification of microgrid along with a solution to isolate the microgrid from the utility grid by disconnecting the static-switch. Any fault in the utility grid causes the microgrid to be isolated from the utility grid whereas if there is a fault in the microgrid it continues to operate with the utility grid. An adaptive fuzzy inference system has been developed using a separate fuzzy rule base for the two modes of operation of microgrid, i.e. islanded mode or grid connected mode. The Central Grid Status Communication System (CGSCU) is considered which monitors the status of PCC and sends a command signal to the relays so that the relay settings are updated with new rules for any transition in the mode of the microgrid. The fundamental phasor amplitude and zero sequence component of current signals are used as input features, fault detection, fault classification and faulty phase identification. A standard microgrid model IEC 61850-7-420 was simulated using MATLAB/SIMULINK. The proposed method is tested for all types of faults by varying fault parameters and also for dynamic situations such as connection/disconnection of DGs and loads. The test results substantiate the effectiveness of the method.
Czasopismo
Rocznik
Tom
Strony
57--69
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electrical Engineering, National Institute of Technology Raipur, C.G., India, bkchaitanya05@gmail.com
autor
- Department of Electrical Engineering, National Institute of Technology Raipur, C.G., India, atulsoni.mailbox@gmail.com
autor
- Department of Electrical Engineering, National Institute of Technology Raipur, C.G., India, ayadav.ele@nitrr.ac.in
Bibliografia
- [1] Y. Li, F. Nejabatkhah, Overview of control, integration and energy management of microgrids, J. Mod. Power Sys. Clean Energy 2(3) (2014) 212–222.
- [2] B. S. Hartono, Y. Budiyanto, R. Setitabudy, Review of microgrid technology, in: International Conference on QiR, 2013.
- [3] N. D. Hatziargyriou, A. P. S. Meliopoulos, Distributed energy sources: Technical challenges, in: IEEE Power Engineering Society Winter Meeting, 2002.
- [4] I. Sadeghkhani, M. E. H. Golshan, A. M. Sani, J. M. Guerrero, A. Ketabi, Transient monitoring function–based fault detection for inverter-interfaced microgrids, IEEE Transactions on Smart Griddoi: 10.1109/TSG.2016.2606519.
- [5] S. Kar, S. R. Samantaray, Time-frequency transform-based differential scheme for microgrid protection, IET Generation, Transmission & Distribution 8 (2) (2014) 310–320.
- [6] A. Gururani, S. R. Mohanty, J. C. Mohanta, Microgrid protection using hilbert–huang transform based-differential scheme, IET Generation, Transmission & Distribution 10 (15) (2016) 3707–3716.
- [7] D. P. Mishra, S. R. Samantaray, G. Joos, A combined wavelet and data-mining based intelligent protection scheme for microgrid, IEEE Transactions on Smart Grid 7 (5) (2016) 2295-2304.
- [8] S. Kar, S. R. Samantaray, M. D. Zadeh, Data-mining model based intelligent differential microgrid protection scheme, IEEE Systems Journal 11 (2) (2017) 1161-1169.
- [9] W. K. A. Najy, H. H. Zeineldin, W. L. Woon, Optimal protection coordination for microgrids with grid-connected and islanded capability, IEEE Transactions On Industrial Electronics 60 (4) (2013) 1668-1677.
- [10] E. Sortomme, S. S. Venkata, J. Mitra, Microgrid protection using communication-assisted digital relays, IEEE Trans. Power Deliv 25 (4) (2010) 2789–2796.
- [11] M. A. Zamani, T. S. Sidhu, A. Yazdani, A protection strategy and microprocessor-based relay for low-voltage microgrids, IEEE Transactions On Power Delivery 26 (3) (2011) 1873–1883.
- [12] H. Nikkhajoei, R. H. Lasseter, Microgrid protection, in: IEEE PES General Meeting, 2007, pp. 24–28.
- [13] U. Orji, C. Schantz, S. B. Leeb, J. L. Kirtley, B. Sievenpiper, K. Gerhard, T. McCoy, Adaptive zonal protection for ring microgrids, IEEE Transactions on Smart Grid 8 (4) (2017) 1843–1851.
- [14] H. Muda, P. Jena, Superimposed adaptive sequence current based microgrid protection: A new technique, IEEE Transactions on Power Delivery 32 (2) (2017) 757–767.
- [15] H. H. Zeineldin, E. F. El-Saadany, M. M. A. Salama, Distributed generation microgrid operation: control and protection, in: Proc. Power Syst. Conf, 2006, p. 105–112.
- [16] E. Casagrande, W. L. Woon, H. H. Zeineldin, D. Svetinovic, A differential sequence component protection scheme for microgrids with inverter-based distributed generators, IEEE Transactions On Smart Grid 5 (1) (2014) 29–37.
- [17] T. S. Ustun, C. Ozansoy, A. Zayegh, Fault current coefficient and time delay assignment for microgrid protection system with central protection unit, IEEE Transactions On Power Systems 28 (2) (2013) 598–606.
- [18] S. Cai, G. Liu, Study on application of fisher information * for power system fault detection, Journal of Power Technologies (2016) 692–701.
- [19] S. Mojtahedzadeh, S. N. Ravadanegh, M. R. Haghifam, A framework for optimal clustering of a greenfield distribution network area into multiple autonomous microgrids, Journal of Power Technologies 96 (4) (2016) 219–228.
- [20] T. S. Ustun, C. Ozansoy, A. Zayegh, Modeling of a centralized microgrid protection system and distributed energy resources according to iec 61850–7-420, IEEE Trans. Power Syst. 27 (3) (2012) 1560–1567.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7aa509a7-af14-45f8-8728-2319ffeed70f