Warianty tytułu
Języki publikacji
Abstrakty
Gas and rock outbursts are one of the most unpredictable natural hazards in Polish and worldwide underground mining. The complexity and unpredictability of this phenomenon make forecasting and underground prevention difficult to achieve. Gas-geodynamic phenomenon occurs in greater intensity in the southern part of the Upper Silesian Coal Basin (USCB) - close to the Bzie-Czechowice fault zone. The relatively low firmness of coal combined with high methane content and pressure may result in a coal seam outburst. To forecast the gas and rock outburst occurrence, the sorption capacity and gas diffusion parameters are used in Polish coal mining. To provide a new, more direct and helpful tool for outburst hazard occurrence interpretation - an outburst probability index (Ww) has been developed in the CLP-B Laboratory. The components of the simple formula are: methane content, firmness of coal, desorption intensity, effective diffusion coefficient and methane sorption capacity. The four numerical ranges are provided to define the probability of the coal seam outburst occurrence. The new method proposed by the CLP-B Laboratory simplifies the outburst hazard prediction and can be used successfully in the coal mines to foresee the forthcoming danger. The result of the outburst probability index reflects changes in each component, which makes it adequate in long-term outburst research in the new drifting roadways.
Czasopismo
Rocznik
Tom
Strony
55--60
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- CLP-B Laboratory, Rybnicka 6, 44-335, Jastrzębie-Zdrój, Poland, mdreger@clpb.pl
autor
- CLP-B Laboratory, Rybnicka 6, 44-335, Jastrzębie-Zdrój, Poland
Bibliografia
- [1] Dutka B, Wierzbicki M. Wybrane własności węgli w rejonach zagrozonych wyrzutami metanu i skał [some properties of outburst prone coals in upper silesian Coal Basin, Poland]. Gornictwo i geoinzynieria. Rok 32. Zeszyt 1. 2008.
- [2] Kopton H. Alternative methodology to determine effective coefficient of methane diffusion in coal. J Sustain Mining 2020;19(2). Article 3.
- [3] Baryakh AA, Andreiko SS, Fedoseev AK. Gas-dynamic roof fall during the potash deposits development. J Mining Inst 2003;246:601-9.
- [4] Kozieł K, Nowakowski A, Sitek L, Skoczylas N. Rock and gas outbursts in copper mines: use of Brazilian tests to evaluate the work of disintegration of rock resulting from stresses produced by gas present in its porous structure. Rock Mech Rock Eng 2022;55:6209-25.
- [5] Shi X, Song D, Qian Z. Classification on coal seam outburst hazards and evaluation of the importance of influencing factors. Open Geosci 2017;9:295-301.
- [6] Regulation of the minister of energy on detailed requirements for the operation of underground mining facilities. 2016. Retrieved from, http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20170001118/O/D20171118.pdf. [Accessed 1 October 2022].
- [7] Song W, Zhang H. Regional prediction of coal and gas outburst hazards based on multifactor pattern recognition. Proc Earth Planetary Sci 2009;1:347-53.
- [8] Skoczylas N. Koncepcja wspomagania analizy ryzyka za pomocą logiki rozmytej na przykładzie zagrozenia wyrzutowego w kopalni węgla kamiennego. Górnictwo i Geoinzynieria 2008;32:1.
- [9] Skoczylas N, Pajdak A, Kozieł K, Teixeira L. Methane emission during gas and rock outburst on the basis of the unipore model. Energies 2019;12.
- [10] Wierzbinski K. Zagrożenie wyrzutami gazów i skał. In: Konopko W [red.] Bezpieczenstwo pracy w kopalniach węgla kamiennego. Tom 2. GIG, Katowice; 2013.
- [11] Kędzior S, Dreger M. Methane occurrence, emissions and hazards in the upper silesian Coal Basin, Poland. Int J Coal Geol 2019;211:103226.
- [12] Dreger M, Kędzior S. Methane emissions against the background of natural and mining conditions in the Budryk and Pniówek mines in the upper silesian Coal Basin (Poland). Environ Earth Sci 2021;80:746.
- [13] Dutka B. Effect of depth on the sorption capacity of coals affected by outburst hazard. Fuel 2021;306:121611.
- [14] Hyman DM. A review of the mechanisms of gas outbursts in coal. Bureau of Mines Information Circular. United States Department of the Interior; 1987.
- [15] Lama RD, Bodziony J. Management of outburst in underground coal mines. Int J Coal Geol 1998;35:83-115.
- [16] Cao Y, He D, Glick DC. Coal and gas outbursts in footwalls of reverse faults. Int J Coal Geol 2001;48:47-63.
- [17] Kędzior S, Dreger M. Geological and mining factors controlling the current methane conditions in the Rydułtowy coal mine (upper silesian Coal Basin, Poland). Energies 2022; 15:6364. https://doi.org/10.3390/en15176364.
- [18] Cybulski K, Malich B, Wieczorek A. Evaluation of the effectiveness of coal and mine dust wetting. J Sustain Mining 2015;14(Issue 2):83-92.
- [19] Wang C, Cheng Y, Yi M, Lei Y, He X. Powder mass of coal after impact crushing: a new fractal-theory-based index to evaluate rock firmness. Rock Mech Rock Eng 2020;53:4251-70.
- [20] Li P, Cao Y, Li X, Wang F, Sun Z, Chen D, et al. Desorption characterization of methane in coal with different moisture contents and its influence on outburst prediction. Adv Civ Eng 2021;10.
- [21] Wierzbicki M. Changes in the sorption/diffusion kinetics of a coal-methane system caused by different temperatures and pressures. Gospod Surowcami Miner 2013;29/4.
- [22] Timofeev DP. Adsorption kinetic. Leipzigvol. 335; 1967.
- [23] Kärger J, Ruthven DM. Diffusion in zeolites and other microporous solids. New York: Wiley & Sons; 1992.
- [24] An F, Yuan Y, Chen X, Li Z, Li L. Expansion Energy of coal gas for the initiation of coal and gas outbursts. Fuel 2019;235: 551-7.
- [25] Noack K. Control of gas emissions in underground coal mines. Int J Coal Geol 1998;35:57-82.
- [26] Młynarczuk M, Wierzbicki M. Stereological and profilometry methods in detection of structural deformations in coal samples collected from the rock and outburst zone in the “Zofiówka” Colliery. Arch Min Sci 2009;54:189-201.
- [27] Godyn K. Structurally altered hard coal in the areas of tectonic disturbances - an initial attempt at classification. Arch Min Sci 2016;61(3):677-94.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7a84335c-e762-42bc-a7bd-68e1daca3c40