Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | LXXI, nr 1 | 1--26
Tytuł artykułu

Effect of friction on the buckling behavior of shallow spherical shells contacting with rigid walls

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the effect of friction on the buckling behavior of a thin, shallow, elastic spherical shell under uniform external pressure based on an axisymmetric model of the finite element method. The study examines a combination of different geometric parameters with three different types of boundary conditions: clamped, hinged, and frictional ends with a wide range of friction coefficients. Friction has a significant influence on the buckling response of the spherical shell for all geometric parameters. In general, the critical pressure decreases as the friction coefficient or geometric parameter decreases. The buckling behavior of the frictional end with small friction coefficients presents an obvious difference compared to the results of high coefficients. For certain geometric parameters, the buckling mode of the spherical shell is transited because of changing the friction coefficient. A buckling map that describes the dependence of critical pressure on both friction coefficient and geometric parameter combined with buckling mode is generated. This map can be applied to the design of the spherical shell against buckling.
Wydawca

Rocznik
Strony
1--26
Opis fizyczny
Bibliogr. 59 poz., il., tab.
Twórcy
  • Saitama University, Saitama, Japan
  • Hanoi University of Civil Engineering, Hanoi, Vietnam
autor
  • Tokyo Institute of Technology, Tokyo, Japan
Bibliografia
  • [1] J. Marcinowski. Stability of relatively deep segments of spherical shells loaded by external pressure. Thin-Walled Structures, 45(10–11):906–910, 2007. doi: 10.1016/j.tws.2007.08.034.
  • [2] B. Pan and W. Cui. An overview of buckling and ultimate strength of spherical pressurehull under external pressure. Marine Structures, 23(3):227–240, 2010. doi: 10.1016/j.marstruc.2010.07.005.
  • [3] J. Zhang, M. Zhang, W. Tang, W. Wang, and M. Wang. Buckling of spherical shells subjected to external pressure: A comparison of experimental and theoretical data. Thin-Walled Structures, 111:58–64, 2017. doi: 10.1016/j.tws.2016.11.012.
  • [4] R. Zoelly. About a Buckling Problem on the Spherical Shell (Über ein Knickungsproblem an der Kugelschale). PhD Thesis, Zurich, 1915 (in German).
  • [5] L. Bauer, E. L. Reiss, and H. B. Keller. Axisymmetric buckling of hollow spheres and hemispheres. Communications on Pure and Applied Mathematics, 23(4):529–568, 1970. doi: 10.1002/cpa.3160230402.
  • [6] L. Kollar. Buckling of complete spherical shells and spherical caps. In Proceeding of a State-of-the-Art Colloqium, pages 401–425, Berlin, Germany, 1982. doi: 10.1007/978-3-642-49334-8_14.
  • [7] T. Von Karman and H. Tsien. The Buckling of Spherical Shells by External Pressure. Journal of the Aeronautical Sciences, 7(2):43–50, 1939. doi: 10.2514/8.1019.
  • [8] A. Kaplan and Y.C. Fung. A Nonlinear Theory of Bending and Buckling of Thin Elastic Shallow Spherical Shells. NACA Technical Note 3212, pages 1–58, California Institute of Technology, Washington, 1954.
  • [9] R.M. Simons. A power series solution of the nonlinear equations for axi-symmetrical bending of shallow spherical shells. Journal of Mathematics and Physics, 35(1–4):164–176, 1956. doi: 10.1002/sapm1956351164.
  • [10] E.L. Reiss, H.J. Greenberg, and H.B. Keller. Nonlinear deflections of shallow spherical shells. Journal of the Aeronautical Sciences, 24(7):533–543, 1957. doi: 10.2514/8.3893.
  • [11] H.J. Weinitschke. On the nonlinear theory of shallow spherical shells. Journal of the Society for Industrial and Applied Mathematics, 6(3):209–232, 1958. doi: 10.1137/0106015.
  • [12] E.L. Reiss. Axially symmetric buckling of shallow spherical shells under external pressure. Journal of Applied Mechanics, 25(4):556–560, 1958. doi: 10.1115/1.4011872.
  • [13] H.B. Keller and E.L. Reiss. Spherical cap snapping. Journal of the Aerospace Sciences, 26(10):643–652, 1959. doi: 10.2514/8.8240.
  • [14] B. Budiansky. Buckling of Clamped Shallow Spherical Shells. Technical Report No. 5, pages 1–48, Harvard University, Massachusetts,1959.
  • [15] G.A. Thurston. A numerical solution of the nonlinear equations for axisymmetric bending of shallow spherical shells. Journal of Applied Mechanics, 28(4):557–562, 1961. doi: 10.1115/1.3641782.
  • [16] N.C. Huang. Unsymmetrical buckling of thin shallow spherical shells. Journal of Applied Mechanics 31(3):447–457, 1964. doi: 10.1115/1.3629662.
  • [17] H.J. Weinitschke. On asymmetric buckling of shallow spherical shells. Journal of Mathematics and Physics, 44(1–4):141–163, 1965. doi: 10.1002/sapm1965441141.
  • [18] A. Holston. Approximate analytical solutions of the finite-deflection equations for a shallow spherical shell. Journal of Applied Mechanics, 34(1):65–72, 1964. doi: 10.1115/1.3607670.
  • [19] F. Kikuchi, H. Ohya, and Y. Ando. Application of finite element method to axisymmetric buckling of shallow spherical shells under external pressure. Journal of Nuclear Science and Technology, 10(6):339–347, 1973. doi: 10.1080/18811248.1973.9735431.
  • [20] F. Zhou, Z. Chen, C. Zheng, F. Xu, Y. Hu, S. Hou, and Z. Qin. Experimental and numerical buckling failure analysis of acrylic hemispheres for application in neutrino detector. Engineering Failure Analysis, 78:147–160, 2017. doi: 10.1016/j.engfailanal.2017.03.017.
  • [21] H.N.R. Wagner, C. Hühne, J. Zhang, W. Tang, and R. Khakimova. Geometric imperfection and lower-bound analysis of spherical shells under external pressure. Thin-Walled Structures, 143:106195, 2019. doi: 10.1016/j.tws.2019.106195.
  • [22] Y. Wang, W. Tang, J. Zhang, S. Zhang, and Y. Chen. Buckling of imperfect spherical caps with fixed boundary under uniform external pressure. Marine Structures, 65:1–11, 2019. doi: 10.1016/j.marstruc.2019.01.004.
  • [23] Y. Wang, J. Zhang, and W. Tang. Buckling Performances of Spherical Caps Under Uni- form External Pressure. Journal of Marine Science and Application, 19(1):96–100, 2020. doi: 10.1007/s11804-020-00125-7.
  • [24] K.-Y. Yeh, W.-P. Song, and W.L. Cleghorn. Axisymmetric buckling of thin shallow circular spherical shells under uniform pressure for large values of geometric parameter 𝜆. International Journal of Non-Linear Mechanics, 29(4):603–611, 1994. doi: 10.1016/0020-7462(94)90026-4.
  • [25] I.K. Silverman and J.R. Mays. A collocation solution of the nonlinear equations for axisymmetric bending of shallow spherical shells. Journal of the Franklin Institute, 294(3):181–192, 1972. doi: 10.1016/0016-0032(72)90013-0.
  • [26] H.J. Weinitschke. On the calculation of limit and bifurcation points in stability problems of elastic shells. International Journal of Solids and Structures, 21(1):79–95, 1985. doi: 10.1016/0020-7683(85)90106-4.
  • [27] W.T. Koiter. A Translation of the Stability of Elastic Equilibrium. Technical Report AFFDL-TR-70-25, pages 1-325, Ohio, 1970.
  • [28] A. Lee, F.L. Jiménez, J. Marthelot, J. W. Hutchinson, and P.M. Reis. The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells. Journal of Applied Mechanics, 83(11):11005, 2016. doi: 10.1115/1.4034431.
  • [29] J. Zhang, Y. Wang, F. Wang, and W. Tang. Buckling of stainless steel spherical caps subjected to uniform external pressure. Ships and Offshore Structures, 13(7):779–785, 2018. doi: 10.1080/17445302.2018.1459358.
  • [30] N.K. Gupta, N.M. Sheriff, and R. Velmurugan. Experimental and theoretical studies on buckling of thin spherical shells under axial loads. International Journal of Mechanical Sciences, 50(3):422–432, 2008. doi: 10.1016/j.ijmecsci.2007.10.002.
  • [31] M. Shariati and H.R. Allahbakhsh. Numerical and experimental investigations on the buckling of steel semi-spherical shells under various loadings. Thin-Walled Structures, 48(8):620–628, 2010. doi: 10.1016/j.tws.2010.03.002.
  • [32] Y.-C. Tseng, P. Amon, L.M. Dolbachian, and J.-Y. Juang. Guided buckling of elastoplastic spherical shells induced by indenters of various shapes. Extreme Mechanics Letters, 44:101247, 2021. doi: 10.1016/j.eml.2021.101247.
  • [33] D.P. Updike and A. Kalnins. Axisymmetric behavior of an elastic spherical shell com- pressed between rigid plates. Journal of Applied Mechanics, 37(3):635–640, 1970. doi: 10.1115/1.3408592.
  • [34] D.P. Updike and A. Kalnins. Axisymmetric postbuckling and nonsymmetric buckling of a spherical shell compressed between rigid plates. Journal of Applied Mechanics, 39(1):172–177, 1972. doi: 10.1115/1.3422607.
  • [35] R. Kitching, R. Houlston, and W. Johnson. A theoretical and experimental study of hemispherical shells subjected to axial loads between flat plates. International Journal of Mechanical Sciences, 17(11-12):693–703, 1975. doi: 10.1016/0020-7403(75)90072-7.
  • [36] V. Brizmer, Y. Zait, Y. Kligerman, and I. Etsion. The effect of contact conditions and material properties on elastic-plastic spherical contact. Journal of Mechanics of Materials and Structures, 1(5):865–879, 2006. doi: 10.2140/jomms.2006.1.865.
  • [37] V. Brizmer, Y. Kligerman, and I. Etsion. The effect of contact conditions and material properties on the elasticity terminus of a spherical contact. International Journal of Non-Linear Mechanics, 43(18-19):5736–5749, 2006. doi: 10.1016/j.ijsolstr.2005.07.034.
  • [38] A. Ovcharenko, G. Halperin, G. Verberne, and I. Etsion. In situ investigation of the contact area in elastic-plastic spherical contact during loading-unloading. Tribology Letters, 25(2)153–160, 2007. doi: 10.1007/s11249-006-9164-y.
  • [39] L. Li, L. Wang, I. Etsion, and F. Talke. The effect of contact conditions and material properties on plastic yield inception in a spherical shell compressed by a rigid flat. International Journal of Solids and Structures, 48(3-4):463–471, 2011. doi: 10.1016/j.ijsolstr.2010.10.015.
  • [40] L. Li, I. Etsion, A. Ovcharenko, and F.E. Talke. The onset of plastic yielding in a spherical shell compressed by a rigid flat. Journal of Applied Mechanics, 78(1):011016, 2011. doi: 10.1115/1.4001994.
  • [41] S. Ronen, R. Goltsberg, and I. Etsion. A comparison of stick and slip contact conditions for a coated sphere compressed by a rigid flat. Friction, 5(3):326–338, 2017. doi: 10.1007/s40544-017-0178-2.
  • [42] P.K. Gupta and N.K Gupta. A study of axial compression of metallic hemispherical domes. Journal of Materials Processing Technology, 209(4):2175–2179, 2009. doi: 10.1016/j.jmatprotec.2008.05.004.
  • [43] A. Nasto, A. Ajdari, A. Lazarus, A. Vaziri, and P.M. Reis. Localization of deformation in thin shells under indentation. Soft Matter, 9(29):6796–6803, 2013. doi: 10.1039/c3sm50279a.
  • [44] A. Nasto and P.M. Reis. Localized structures in indented shells: A numerical investigation. Journal of Applied Mechanics, 81(12):21008, 2014. doi: 10.1115/1.4028804.
  • [45] M. Shariati and M.M. Rokhi. Numerical and experimental investigations on buckling of steel cylindrical shells with elliptical cutout subject to axial compression. Thin-Walled Structures, 46(11):1251–1261, 2008. doi: 10.1016/j.tws.2008.02.005.
  • [46] R. Degenhardt, K. Rohwer, W. Wagner, and J.-P. Delsemme. Postbuckling and collapse analysis of CFRP stringer stiffened panels – A GARTEUR activity. In Proceeding of the 4th International Conference of Thin-Walled Structures ICTWS, pages 121–128, Loughborough, England, 2004. doi: 10.1201/9781351077309-10.
  • [47] R. Degenhardt and J.P. Delsemme. Buckling and postbuckling analysis of a CFRP stiffened panel for a better material exploitation. In Proceeding of SAMTECH Users Conference, pages 1–7, Paris, Frankreich, 2005.
  • [48] J. Btachut. Buckling of shallow spherical caps subjected to external pressure. Journal of Applied Mechanics, 72(5):803–806, 2005. doi: 10.1115/1.1993667.
  • [49] E. Reissner. Stresses and small displacements of shallow spherical shells. I. Studies in Applied Mathematics, 25(1–4):80–85, 1946. doi: 10.1002/sapm194625180.
  • [50] R.H. Homewood, A.C. Brine, and A.E. Johnson. Experimental investigation of the buckling instability of monocoque shells. Experimental Mechanics, 1(3):88–96, 1961. doi: 10.1007/BF02324071.
  • [51] G.A. Thurston and F.A. Penning. Effect of axisymmetric imperfections on the buckling of spherical caps under uniform pressure. AIAA Journal, 4(2):319–327, 1966. doi: 10.2514/3.3435.
  • [52] M. Sunakawa and K. Ichida. A high precision experiment on the buckling of spherical caps subjected to external pressure. ISAS report/Institute of Space and Aeronautical Science,University of Tokyo, pages 87–121, Tokyo, 1974
  • [53] T. Kobayashi, Y. Mihara, and F. Fujii. Path-tracing analysis for post-buckling process of elastic cylindrical shells under axial compression. Thin-Walled Structures, 61:180–187, 2012. doi: 10.1016/j.tws.2012.05.018.
  • [54] T. Kobayashi and Y. Mihara. Postbuckling analyses of elastic cylindrical shells under axial compression. In Transactions of the Japan Society of Mechanical Engineers, Part A, 77:582–589, 2011. doi: 10.1299/kikaia.77.582. (in Japanese).
  • [55] E. Riks. The application of Newton’s method to the problem of elastic stability. Journal of Applied Mechanics, 39(4)1060–1065, 1972. doi: 10.1115/1.3422829.
  • [56] E. Riks. An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures, 15(7):529–551, 1979. doi: 10.1016/0020-7683(79)90081-7.
  • [57] E. Riks. Some computational aspects of the stability analysis of nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 47:219–259, 1984. doi: 10.1016/0045-7825(84)90078-1.
  • [58] P. Jasion and K. Magnucki. Elastic buckling of barrelled shell under external pressure. Thin Walled Structures, 45(4):393–399, 2007. doi: 10.1016/j.tws.2007.04.001.
  • [59] M.A. Krenzke and T.J. Kiernan. Elastic stability of near-perfect shallow spherical shells. AIAA Journal, 1(12):2855–2857, 1963. doi: 10.2514/3.2187.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7a7b3d1b-cb34-482c-b480-f8d0f4126720
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.