Czasopismo
2015
|
Vol. 63, no. 4
|
1181--1203
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Satellite Laser Ranging (SLR) to LAGEOS has a remarkable contribution to high-precise geodesy and geodynamics through deriving and validating various global geophysical models. This paper validates ocean tide models based on the analysis of satellite altimetry data, coastal tide gauges, and hydrodynamic data, i.e., CSR3.0, TOPEX4.0, CSR4.0A, FES2004, GOT00.2, and the CSRC Schwiderski model. LAGEOS orbits and SLR observation residuals from solutions based on different ocean tide models are compared and examined. It is found that LAGEOS orbits are sensitive to tidal waves larger than 5 mm. The analysis of the aliasing periods of LAGEOS orbits and tidal waves reveals that, in particular, the tidal constituent S2 is not well established in the recent ocean tide models. Some of the models introduce spurious peaks to empirical orbit parameters, which can be associated with S2, Sa, and K2 tidal constituents, and, as a consequence, can be propagated to fundamental parameters derived from LAGEOS observations.
Czasopismo
Rocznik
Tom
Strony
1181--1203
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
- Astronomical Institute, University of Bern, Canton Bern, Switzerland, krzysztof.sosnica@aiub.unibe.ch ; krzysztof.sosnica@igig.up.wroc.pl
- Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
Bibliografia
- [1] Altamimi, Z., X. Collilieux, and L. Métivier (2011), ITRF2008: an improved solution of the international terrestrial reference frame, J. Geod. 85, 8, 457-473, DOI: 10.1007/s00190-011-0444-4.
- [2] Beutler, G. (2005), Methods of Celestial Mechanics, Springer, Berlin Heidelberg.
- [3] Bianco, G., R. Devoti, M. Fermi, V. Luceri, P. Rutigliano, and C. Sciarretta (1998), Estimation of low degree geopotential coefficients using SLR data, Planet.Space Sci. 46, 11-12, 1633-1638, DOI: 10.1016/S0032-0633(97)00215-8.
- [4] Bizouard, C., and D. Gambis (2014), The combined solution C04 for Earth Orientation Parameters consistent with International Terrestrial Reference Frame 2008, IERS Earth Orientation Product Centre, Paris, France.
- [5] Chen, J.L., C.R. Wilson, and K.W. Seo (2009), S2 tide aliasing in GRACE timevariable gravity solutions, J. Geod. 83, 7, 679-687, DOI: 10.1007/s00190-008-0282-1.
- [6] Cheng, M.K., C.K. Shum, and B.D. Tapley (1997), Determination of long-term changes in the Earth’s gravity field from satellite laser ranging observations, J. Geophys. Res. 102, B10, 22377-22390, DOI: 10.1029/97JB01740.
- [7] Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (2007), Bernese GPS software version 5.0, Astronomical Institute, University of Bern, Bern, Switzerland.
- [8] Dow, J.M. (1990), Ocean tides and tectonic plate motions in high precision orbit determination, Adv. Space Res. 10, 3-4, 229-238, DOI: 10.1016/0273-1177(90)90353-2.
- [9] Eanes, R.J. (2004), CSR4.0A global ocean tide model, Center for Space Research, University of Texas, Austin, USA, ftp://ftp.csr.utexas.edu/pub/tide.
- [10] Eanes, R.J., and S. Bettadpur (1996), The CSR 3.0 global ocean tide model: Diurnal and semi-diurnal ocean tides from TOPEX/POSEIDON altimetry, Technical Report CRS-TM-96-05, Center for Space Research, University of Texas, Austin, USA.
- [11] Egbert, G.D., and. S.Y. Erofeeva (2002), Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol. 19, 2, 183-204, DOI: 10.1175/ 1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.
- [12] Egbert, G.D., A.F. Bennett, and M.G.G. Foreman (1994), TOPEX/POSEIDON tides estimated using a global inverse model, J. Geophys. Res. 99, C12, 24821-24852, DOI: 10.1029/94JC01894.
- [13] Folkner, W.M., P. Charlot, M.H. Finger, J.G. Williams, O.J. Sovers, X.X. Newhall, and E.M. Standish Jr. (1994), Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements, Astron. Astrophys. 287, 1, 279-289.
- [14] Iorio, L. (2001), Earth tides and Lense-Thirring effect, Celest. Mech. Dyn. Astr. 79, 3, 201-230, DOI: 10.1023/A:1017963306722.
- [15] Kolaczek, B., H. Schuh, and D. Gambis (eds.) (2000), High frequency to subseasonal variations in Earth Rotation, IERS Technical Note No. 28, Paris: Central Bureau of IERS - Observatoire de Paris, 91 pp.
- [16] Lejba, P., and S. Schillak (2011), Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites, Adv. Space Res. 47, 4, 654-662, DOI: 10.1016/j.asr.2010.10.013.
- [17] Lemoine, J.M., R. Biancale, and G. Bourda (2004), Processing 18.6 years of Lageos data. In: Proc. 14th Int. Laser Ranging Workshop, 7-11 June 2004, San Fernando, Spain.
- [18] Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam. 56, 5-6, 394-415, DOI: 10.1007/s10236-006-0086-x.
- [19] Maier, A., S. Krauss, W. Hausleitner, and O. Baur (2012), Contribution of satellite laser ranging to combined gravity field models, Adv. Space Res. 49, 3, 556-565, DOI: 10.1016/j.asr.2011.10.026.
- [20] McCarthy, D.D., and G. Petit (2004), IERS Conventions 2003, IERS Technical Note No. 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 127 pp.
- [21] Mendes, V.B., and E.C. Pavlis (2004), High-accuracy zenith delay prediction at optical wavelengths, Geophys. Res. Lett. 31, 14, L14602, DOI: 10.1029/ 2004GL020308.
- [22] Meyer, U., A. Jäggi, and G. Beutler (2012), Monthly gravity field solutions based on GRACE observations generated with the Celestial Mechanics Approach, Earth Planet. Sci. Lett. 345-348, 72-80, DOI: 10.1016/j.epsl.2012.06.026.
- [23] Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res. 117, B4, B04406, DOI: 10.1029/2011JB008916.
- [24] Pearlman, M.R., J.J. Degnan, and J.M. Bosworth (2002), The International Laser Ranging Service, Adv Space Res. 30, 2, 125-143, DOI: 10.1016/S0273-1177(02)00277-6.
- [25] Petit, G., and B. Luzum (2010), IERS Conventions 2010, IERS Technical Note No. 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 179 pp.
- [26] Ponchaut, F., F. Lyard, and C. Le Provost (2001), An analysis of the tidal signal in the WOCE Sea level dataset, J. Atmos. Oceanic Technol. 18, 1, 77-91, DOI: 10.1175/1520-0426(2001)018<0077:AAOTTS>2.0.CO;2.
- [27] Ray, J., J. Griffiths, X. Collilieux, and P. Rebischung (2014), Subseasonal GNSS errors in IGS products. In: Proc. EGU General Assembly 2014, 27 April -2May 2014, Vienna, Austria, EGU2014-8504.
- [28] Ray, R.D. (1999), A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2, NASA Tech. Memo. 209478, Goddard Space Flight Centre, Greenbelt, MD, USA.
- [29] Ray, R.D., and R.M. Ponte (2003), Barometric tides from ECMWF operational analyses, Ann. Geophys. 21, 8, 1897-1910, DOI: 10.5194/angeo-21-1897-2003.
- [30] Rutkowska, M., and M. Jagoda (2010), Estimation of the elastic Earth parameters using the SLR LAGEOS 1 and LAGEOS 2 data, Acta Geophys. 58, 4, 705-716, DOI: 10.2478/s11600-009-0062-1.
- [31] Rutkowska, M., and M. Jagoda (2012), Estimation of the elastic Earth parameters using SLR data for the low satellites STARLETTE and STELLA, Acta Geophys. 60, 4, 1213-1223, DOI: 10.2478/s11600-012-0045-5.
- [32] Savcenko, R., and W. Bosch (2008), EOT08a - empirical ocean tide model from multi-mission satellite altimetry, DGFI Report No. 81, Deutsches Geodätisches Forschungsinstitut (DGFI), München, Germany.
- [33] Schillak, S., and E. Wnuk (2003), The SLR stations coordinates determined from monthly arcs of LAGEOS-1 and LAGEOS-2 laser ranging in 1999-2001, Adv. Space. Res. 31, 8, 1935-1940, DOI: 10.1016/S0273-1177(03)00169-8.
- [34] Schillak, S., E. Wnuk, H. Kunimori, and T. Yoshino (2006), Short note: Crustal deformation in the Key Stone network detected by satellite laser ranging, J. Geod. 79, 12, 682-688, DOI: 10.1007/s00190-005-0020-x.
- [35] Schutz, B.E., M.K. Cheng, C.K. Shum, R.J. Eanes, and B.D. Tapley (1989), Analysis of earth rotation solution from Starlette, J. Geophys. Res. 94, B8, 10167-10174, DOI: 10.1029/JB094iB08p10167.
- [36] Schwiderski, E.W. (1980), On charting global ocean tides, Rev. Geophys. 18, 1, 243-268, DOI: 10.1029/RG018i001p00243.
- [37] Shum, C.K., P.L. Woodworth, O.B. Andersen, G.D. Egbert, O. Francis, C. King, S.M. Klosko, C. Le Provost, X. Li, J.M. Molines, M.E. Parke, R.D. Ray, M.G. Schlax, D. Stammer, C.C. Tierney, P. Vincent, and C.I. Wunsch (1997), Accuracy assessment of recent ocean tide models, J. Geophys. Res. 102, C11, 25173-25194, DOI: 10.1029/97JC00445.
- [38] Smith, D.E., and D.L. Turcotte (eds.) (1993), Contributions of Space Geodesy to Geodynamics: Earth Dynamics, Geodynamics Series, Vol. 24, American Geophysical Union, Washington DC.
- [39] Sośnica, K. (2014), Determination of Precise Satellite Orbits and Geodetic Parameters using Satellite Laser Ranging, Ph.D. Thesis, Astronomical Institute, Faculty of Science of the University of Bern, Bern, Switzerland, 253 pp.
- [40] Sośnica, K., D. Thaller, A. Jäggi, R. Dach, and G. Beutler (2012), Sensitivity of Lageos orbits to global gravity field models, Artif. Sat. 47, 2, 47-65, DOI: 10.2478/v10018-012-0013-y.
- [41] Sośnica, K., D. Thaller, R. Dach, A. Jäggi, and G. Beutler (2013), Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results, J. Geod. 87, 8, 751-769, DOI: 10.1007/s00190-013-0644-1.
- [42] Sośnica, K., A. Jäggi, D. Thaller, G. Beutler, and R. Dach (2014), Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame, J. Geod. 88, 8, 789-804, DOI: 10.1007/s00190-014-0722-z.
- [43] Tapley, B.D., B.E. Schutz, R.J. Eanes, J.C. Ries, and M.M. Watkins (1993), Lageos laser ranging contributions to geodynamics, geodesy, and orbital dynamics. In: D.E. Smith and D.L. Turcotte (eds.), Contributions of Space Geodesy to Geodynamics: Earth Dynamics, Geodynamics Series, Vol. 24, American Geophysical Union, Washington DC, 147-173, DOI: 10.1029/ GD024p0147.
- [44] Wünsch J., P. Schwintzer, and S. Petrovic (2005), Comparison of two different ocean tide models especially with respect to the GRACE satellite mission, Scientific Technical Rep. STR05/08, GeoForschungsZentrum Potsdam, Germany.
- [45] Zahran K.H., G. Jentzsch, and G. Seeber (2006), Accuracy assessment of ocean tide loading computations for precise geodetic observations, J. Geodyn. 42, 4-5, 159-174, DOI: 10.1016/j.jog.2006.07.002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7a7a1efc-4582-4c6f-82b6-ca271b1a3845