Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2019 | Vol. 67, no. 6 | 1823--1834
Tytuł artykułu

Geophysical and geotechnical approach to a landslide stability assessment: a case study

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Landslides are complex phenomena, and the main factors that have a significant impact on their behavior are changes in slope inclination geometry and changes in water conditions. The main purpose of this work was to evaluate current conditions of the landslide in Brzozówka, near Cracow (Poland), and analyzing how different saturations of soil influence the stability of the landslide. The combination of geophysical and geotechnical research, such as electrical resistivity tomography (ERT), cone penetration testing, drilling and laboratory tests as well as a comprehensive analysis of their results, provided reliable information on the geological structure and geotechnical parameters of the landslide. The results were used in numerical simulations of the landslide stability, in which a two-phase model (soil and water) was assumed that included the effective soil strength parameters and the transient flow conditions as well as a partial saturation zone. The sliding surface obtained from the numerical modeling was almost flat, which was confirmed by the ERT method. It was proved that the landslide occurred when the saturation of the upper part of the slope exceeded 0.8. Obtained results are useful for engineering practice.
Wydawca

Czasopismo
Rocznik
Strony
1823--1834
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
  • Faculty of Environmental Engineering, Cracow University of Technology, Warszawska 24 St, 31‑155 Cracow, Poland, bettka@pk.edu.pl
  • Faculty of Environmental Engineering, Cracow University of Technology, Warszawska 24 St, 31‑155 Cracow, Poland
  • Faculty of Environmental Engineering, Cracow University of Technology, Warszawska 24 St, 31‑155 Cracow, Poland
Bibliografia
  • 1. Aster RC, Borchers B, Thurber CH (2005) Parameter estimation and inverse problems. Elsevier Academic Press, Amsterdam
  • 2. Bellanova J, Calamita G, Giocoli A, Luongo R, Macchiato M, Perrone A, Uhlemann S, Piscitelli S (2018) Electrical resistivity imaging for the characterization of the Montaguto landslide (southern Italy). Eng Geol 243(4):272–281. https://doi.org/10.1016/j.enggeo.2018.07.014
  • 3. Błażyński J, Drągowski A, Frankowski Z, Kaczyński R, Rybicki S, Wysokiński L (1999) Zasady sporządzania dokumentacji geologiczno-inżynierskich. Warszawa, Państwowy Instytut Geologiczny (in Polish)
  • 4. Boyle A, Wilkinson B, Chambers J, Meldrum P, Uhlemann S, Adler A (2018) Jointly reconstructing ground motion and resistivity for ERT-based slope stability monitoring. Geophys J Int 212:1167–1182. https://doi.org/10.1093/gji/ggx453
  • 5. Břežný M, Pánek T, Lenart J, Grygar R, Tábořík P, McColl S (2018) Sackung and enigmatic mass movement folds on a structurally controlled mountain ridge. Geomorphology 322:175–187. https://doi.org/10.1016/j.geomorph.2018.09.004
  • 6. Chambers JE, Wilkinson P, Kuras O, Ford J, Gunn D, Meldrum P, Pennington C, Weller A, Hobbs P, Ogilvy R (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 125:472–484. https://doi.org/10.1016/j.geomorph.2010.09.017
  • 7. Cho SE (2016) Stability analysis of unsaturated soil slopes considering water–air flow caused by rainfall infiltration. Eng Geol 211:184–197
  • 8. Commend S, Kivell S, Obrzud R, Podleś Truty A, Zimmermann T (2016) Computational geomechanics on PC. Rossolis Editions, Bussigny
  • 9. Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63:397–406. https://doi.org/10.1007/s12665-010-0724-y
  • 10. Cornforth D (2005) Landslides in practice. Wiley, Hoboken
  • 11. Crawford M, Bryson L (2018) Assessment of active landslides using field electrical measurements. Eng Geol 233:146–159. https://doi.org/10.1016/j.enggeo.2017.11.012
  • 12. Dardé J, Hyvönen N, Seppänen A, Staboulis S (2013) Simultaneous reconstruction of outer boundary shape and admittivity distribution in electrical impedance tomography. SIAM J Imag Sci 6:176–198. https://doi.org/10.1137/120877301
  • 13. Dostál I, Putiška R, Kušnirák D (2014) Determination of shear surface of landslides using electrical resistivity tomography. Contrib Geophys Geodesy 44(2):133–147. https://doi.org/10.2478/congeo-2014-0008
  • 14. Farquharson CG, Oldenburg DW (1998) Non-linear inversion using general measures of data misfit and model structure. Geophys J Int 134:213–227. https://doi.org/10.1046/j.1365-246x.1998.00555
  • 15. Friedel S, Thielen A, Springman SM (2006) Investigation of a slope endangered by rainfall-induced landslides using 3D resistivity tomography and geotechnical testing. J Appl Geophys 60:100–114. https://doi.org/10.1016/j.jappgeo.2006.01.001
  • 16. Gradziński R (1972) Geological guide the vicinity of Cracow, 1st edn. Geological Press, Warsaw (in Polish)
  • 17. Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Geotechnique 49(3):387–403. https://doi.org/10.1680/geot.1999.49.3.387
  • 18. Head KH (1995) Manual of soil laboratory testing, II edn. Pentech Press, London
  • 19. Holec J, Bednarik M, Sabo M, Minar J, Yilmaz I, Marschalko M (2013) A small-scale landslide susceptibility assessment for the territory of Western Carpathians. Nat Hazard 69:1081–1107. https://doi.org/10.1007/s11069-013-0751-6
  • 20. Jomard H, Lebourg T, Guglielmi Y, Tric E (2010) Electrical imaging of sliding geometry and fluids associated with a deep seated landslide (La Clapiere, France). Earth Surf Proc Land 35:588–599. https://doi.org/10.1002/esp.1941
  • 21. Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bull Soc France 178(2):101–112. https://doi.org/10.2113/gssgfbull.178.2.101
  • 22. Kneisel C, Hauck C (2008) Electrical method. In: Hauck C, Kneisel C (eds) Applied geophysics in periglacial environments. Cambridge University Press, Cambridge, pp 3–27
  • 23. Lebourg T, Binet S, Tric E, Jomarad H, Bedoui SE (2005) Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nova 17(5):399–406. https://doi.org/10.1111/j.1365-3121.2005.00623
  • 24. Loke M (2000) Topographic modelling in electrical imaging inversion. In: 62nd EAGE conference and technical exhibition: Glasgow, Scotland, 29 May–2 June 2000, Extended Abstracts, D-2
  • 25. Loke M (2014) Tutorial: 2-D and 3-D electrical imagining surveys. Geotomo Software, Malaysia
  • 26. Loke MH (2017) Rapid 3-D resistivity & IP inversion using the least-squares method. Geotomo software, Penang Malaysia
  • 27. Loke M, Dahlin T (2002) A comparison of the Gauss- Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49:149–162. https://doi.org/10.1016/S0926-9851(01)00106-9
  • 28. Loke M, Ackworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187. https://doi.org/10.1071/EG03182
  • 29. Lunne T, Robertson P, Powell J (1997) Cone Penetration Testing in geotechnical practice. Blackie Academic and Professional, London
  • 30. Marquardt D (1970) Generalized inverse, ridge regression, biased linear estimation and nonlinear regression. Technometrics 12:591–613
  • 31. Merritt A, Chambers J, Murphy W, Wilkinson P, West L, Gunn D, Meldrum P, Kirkham M, Dixon N (2014) 3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides 11(4):537–550. https://doi.org/10.1007/s10346-013-0409-1
  • 32. Obrzud R (2009) Application of numerical modeling and neural networks to constitutive parameter assessement from in situ tests. Ph.D. Thesis. École Polytechnique Fédérale de Lausanne, Suisse
  • 33. Ozbay A, Cabalar A (2015) FEM and LEM stability analyses of the fatal landslides at Çöllolar open-cast lignite mine in Elbistan, Turkey. Landslides 12:155–163. https://doi.org/10.1007/s10346-014-0537-2
  • 34. Panek T, Hradecky J, Silhan K (2008) Application of electrical resistivity tomography (ERT) in the study of various types of slope deformations in anisotropic bedrock: case studies from the Flysch Carpathians. Studia Geomorphol Carpatho-Balcanica 42:57–73
  • 35. Pasierb B (2012) Resistivity tomography in prospecting geological surface and anthropogenic objects. Techn Trans Environ Eng 23-Ś:201–209 (in Polish)
  • 36. Pasierb B (2015) Numerical Evaluation 2D electrical resistivity tomography for investigations of subsoil. Techn Trans Environ Eng 2-Ś:101–113. https://doi.org/10.4467/2353737XCT.15.230.4616
  • 37. Perrone A, Lapenna V, Piscitelli S (2014) Electrical resistivity tomography technique for landslide investigation: a review. Earth-Sci Rev 135:65–82. https://doi.org/10.1016/j.enggeo.2018.07.01
  • 38. Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, Hoboken
  • 39. Sarah D, Daryono MR (2012) Engineering geological investigation of slow moving landslide in Jahiyang Village, Salawu, Tasikmalaya Regency. Indones J Geol 7(1):27–38. https://doi.org/10.17014/ijog.v7i1.133
  • 40. Šilhán K, Tichavský R, Fabiánová A, Chalupa V, Tolasz R (2019) Understanding complex slope deformation through tree-ring analyses. Sci Total Environ 665:1083–1094. https://doi.org/10.1016/j.scitotenv.2019.02.195
  • 41. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638
  • 42. Stanisz J, Pilecki Z, Woźniak H (2012) Selected aspects of numerical analysis of landslide stability in Swoszowice. Geological exploration technology geothermics. Sustain Dev 2:77–88
  • 43. Tang G, Huang J, Sheng D, Sloan SW (2018) Stability analysis of unsaturated soil slopes under random rainfall patterns. Eng Geol 245:322–332
  • 44. Terzaghi K (1950) Mechanism of landslides. In: Application of geology to engineering practice, Berkey vol. Geological Society of America, pp 83–123 (Reprinted in From theory to practice in soil mechanics 1960. Wiley, New York, pp 202–245)
  • 45. Tomecka-Suchoń S, Żogała B, Gołębiowski T, Dzik G, Dzik T, Jochymczyk K (2017) Application of electrical and electromagnetic methods to study sedimentary covers in high mountain areas. Acta Geophys 65:743–755. https://doi.org/10.1007/s11600-017-0068-z
  • 46. Truty A, Urbański A, Grodecki M, Podleś K (2009) Computer aided models of landslides and their protection problems, (in Polish with English and German summary). Scientific-technical papers of communication engineers and technicians of the Republic of Poland in Cracow 88/144: 395–419
  • 47. Uhlemann S, Chambers J, Wilkinson P, Maurer H, Merritt A, Meldrum P, Kuras O, Gunn D, Smith A, Dijkstra T (2017) Four-dimensional imaging of moisture dynamics during landslide reactivation. J Geophys Res 122(1):398–418. https://doi.org/10.1002/2016JF003983
  • 48. Van Genuchten MTh (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002
  • 49. Wysokiński L (2011) The methods of landslides prediction and their protection. In: XXV scientific conference “Building failures”, 291–320
  • 50. Xu JS, Yang XL (2018) Three-dimensional stability analysis of slope in unsaturated soils considering strength nonlinearity under water drawdown. Eng Geol 237:102–115
  • 51. Zheng Y, Tang X, Zhao S, Deng C, Lei W (2009) Strength reduction and step-loading finite element approaches in geotechnical engineering. J Rock Mech Geotech Eng 1(1):21–30. https://doi.org/10.3724/SP.J.1235.2009.0002
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7a31c3c4-5af8-44c6-a656-12a512b64f25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.