Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Uniform symmetric bodies can be observed floating asymmetrically under certain circumstances. Previous explanations of this are mostly abstract and lack experimental verification, making their understanding and application difficult. This article presents in detail alternative insights into the floating equilibria of uniform prisms and parabolic cylinders. The intrinsic characteristics of the equilibrium curves are investigated, and several equilibria different from those in the literature are found. The inflection points in the equilibrium curves are analyzed quantitatively due to their significance for floating states. Furthermore, experiments have been conducted for the square prism which validate the derived equilibrium curve, and provide a practical impression of the asymmetric floating phenomenon of symmetric bodies. These results have the potential to be applied in naval and ocean engineering, such as in the design of vessels and floating offshore structures.
Czasopismo
Rocznik
Tom
Strony
16--23
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- China Ship Scientific Research Center, China, joson_gu@yahoo.com
- Taihu Laboratory of Deepsea Technological Science, China
- Federal University of Rio de Janeiro , Brazil
autor
- Wuhan University of Technology, China
autor
- China Ship Scientific Research Center, China
- Taihu Laboratory of Deepsea Technological Science, China
autor
- Beibu Gulf University, China
Bibliografia
- 1. E. N. Gilbert, “How things float,” Journal American Mathematical Monthly, vol. 3, pp. 201 216, 1991.
- 2. J. Megel and J. Kliava, “Metacenter and ship stability,”American Journal, American Association of Physics Teachers, vol. 78, no. 7, pp. 738 747, 2010.
- 3. A. Karczewski, “The Influence of The Cuboid Float’s Parameters on The stability of A Floating Building,” Polish Maritime Research, vol. 27, no. 107, pp. 16 21, 2020.
- 4. J. Li, “Analysis of The Dynamic Response of Offshore Floating Wind Power Platforms in Waves,” Polish Maritime Research, vol. 27, no. 108, pp. 17 25, 2020.
- 5. K. J. Spyrou, “The stability of floating regular solids,” Ocean Engineering, vol. 257, no. 111615, 2022.
- 6. D. G. AS, RULERS FOR CLASSIFICATION: Inland Navigation vessels, part 6 Additional class notations, 2015.
- 7. H. Auerbach, “Sur un problem de M. Ulam concernant l’equilibre des corps flottants (On a problem of Mr. Ulam concerning the equilibrium of floating bodies),” Studia Math, vol. 7, pp. 121 142, 1938.
- 8. C. L. Bernard, Stability and equilibrium of floating bodies, London: Constable and Company Limited, 1914.
- 9. V. Bertram, Practical ship hydrodynamics, 2nd ed., Oxford: Elsevier Butterworth Heinemann, 2012.
- 10. A. Biran, Ship hydrostatics and stability, 1st ed., Oxford: Elsevier Butterworth Heinemann, 2003.
- 11. S. N. Blagoveshchensky, Theory of ship motions (Transl. From the 1st Russian edition), New York: Dover Publications, 1962.
- 12. H. E. Rossell and L. B. Chapman, Principles of Naval Architecture, Vol. 1, New York: Soc. Naval Architecture and Marine Engineering, 1941.
- 13. E. H. Lockwood, A book of curves, Cambridge University Press, 2007.
- 14. S. M. Ulam, “A collection of mathematical problems,” Science, vol. 132, pp. 665 666, 1960.
- 15. L. Montejano, “On a problem of Ulam concerning a characterization of the sphere”Studies in Applied Mathematics, vol. 3, pp. 243 248, 1973.
- 16. P. Bouguer, Traite du Navire, de sa construction, et de ses mouvemens (Tratise on Ship’s Construction and Movements), Paris: Jombert, 1746.
- 17. K. D’Angremond and F. C. Van Roode, Breakwaters and Closure Dams, London: Spon Press, 2004.
- 18. P. Erdos, G. Schibler and R. C. Herndon, “Floating equilibrium of symmetrical objects and the breaking of symmetry, Part 1: Prisms,” Am. J. Phys., Am. J. Phys., vol. 60, no. 4, pp. 335-345, 1992.
- 19. H. Ghassemi, I. Ghamari and A. Ashrafi, “Numerical Prediction of Wave Patterns Due to Motion of 3D Bodies by Kelvin-Havelock Sources,” Polish Maritime Research, vol. 23, no. 92, pp. 46-58, 2016.
- 20. T. L. Heath, The works of Archimedes, Dover Publications, 2005. 21. K. J. Rawson and E. C. Tupper, Basic Ship Theory, 5th ed., London: Longman, 2001.
- 22. D. R. Derrett and C. B. Barras, Ship stability for masters and mates, 6th ed., Oxford: Elsevier Butterworth-Heinemann, 2006.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7a2e7031-fed1-4e64-8897-d8fb911476d8