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AbstrAct

Uniform symmetric bodies can be observed floating asymmetrically under certain circumstances. Previous explanations 
of this are mostly abstract and lack experimental verification, making their understanding and application difficult. 
This article presents in detail alternative insights into the floating equilibria of uniform prisms and parabolic cylinders. 
The intrinsic characteristics of the equilibrium curves are investigated, and several equilibria different from those 
in the literature are found. The inflection points in the equilibrium curves are analyzed quantitatively due to their 
significance for floating states. Furthermore, experiments have been conducted for the square prism which validate the 
derived equilibrium curve, and provide a practical impression of the asymmetric floating phenomenon of symmetric 
bodies. These results have the potential to be applied in naval and ocean engineering, such as in the design of vessels 
and floating offshore structures.
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INTRODUCTION

The stability of floating bodies is a classic and fundamental 
subject in fluid mechanics. The study of the hydrostatic 
responses of floating bodies is much earlier than the study of 
the hydrodynamic response due to the interaction between waves 
and the floating body[1]. Indeed, it can be traced back to the 
well-known work of Archimedes[2]. Since then, the interest of 
researchers and engineers in this subject have never ceased[3]
[4][5][6]. In naval and ocean engineering, the concept of a meta-
centre (denoted by M)[7][8][9][10] has been introduced to 
evaluate the initial stability of a floating body. It is defined as 
the intersection of two vertical axes passing through the center 
of buoyancy at two slightly different angles of heel. What is 
more, a well-known formulation has been derived, formulating 

the distance between the buoyancy centre and the meta-centre 
with the ratio of the moment of inertia of the plane of flotation 
and the volume of the displaced fluid (BM = I/

∆

). A general 
criterion for the stability of a ship is commonly applied with 
the use of the meta-center, i.e., the ship remains stable provided 
the weight and the buoyancy create an upright moment after 
a limited inclination. Capsizing could happen if the sign of the 
moment is the opposite. Generally, the meta-centre is assumed 
consistent at a limited inclination angle (< 8°)[11], in the scope 
of initial stability. Since the ship’s hull is usually symmetric, the 
arm of the upright moment is dependent on the relative position 
of the meta-centre with respect to the centre of gravity (denoted 
by G)[12]. The floating state can be regarded as stable, neutral, or 
unstable when M is located above, on, or below G, respectively. In 
the preliminary phase of ship design, the stability curve is usually 
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used to characterize the capability of the hull’s maintaining an 
upright floating state when subjected to limited inclinations. 
Therefore, the evaluation of the floating equilibrium would be 
significant for the design of floating structures, especially those 
involving large variations of weight. To simplify the problem, 
the present article will start with fundamental homogenous 
floating bodies.

Physically speaking, could a uniform and symmetric body 
float asymmetrically in still water? As the general criterion 
of hydrostatic stability of a  floating body is commonly 
identified under a specified floating state, researchers have 
attempted to figure out the ‘equilibrium’ of a random floating 
state of some fundamental geometries such as a floating ball, 
circular cylinder, rectangular box, and so on. For example, 
Auerbach[13]demonstrated that a non-circular cylinder could 
float indifferently with respect to the cylinder’s centra axis. 
Likewise, Ulam[14]raised a question: whether a uniform 
body that is able to float stably at any orientation must be 
a sphere. Assuming the body’s density ρ approaches zero, 
the problem is equivalent to whether a body’s being able to 
hold on in any inclination on a horizontal plane is necessarily 
a sphere. As a partial answer, Montejano[15]proved that if 
a body with the above-mentioned character was connected, 
closed, and bounded, then its shell should be a sphere. This 
implies that the sphere is one possible geometry with the 
desired property. Consequently, Gilbert[1] analysed the stable 
floating equilibrium for several geometries such as an ellipsoid, 
cylinder and cube, employing the law of minimum energy 
which is further extended into more complex geometries by 
Mégel[2]. More recently, a comprehensive review of the floating 
equilibria of regular solids has contributed to integrating the 
main results and predicting the potential for applications in 
engineering[5]. According to the above-mentioned research, 
a symmetric body is proven theoretically to be able to float 
asymmetrically. However, the proofs of equilibria are quite 
abstract, and an extensive investigation of the equilibrium 
curve is still needed. Also, the characteristics of an equilibrium 
are yet to be verified by physical experiment. 

In naval and ocean engineering, the ship and offshore 
structures are commonly designed to float in an upright state[3]
[4][6]. Meanwhile, the consideration of the entire floating states 
is practical and crucial under certain circumstances such as 
improper loading and damage. In the present article, the entire 
equilibrium curve of stability is, for the uniform square prism 
and rectangular prism, derived in a more straightforward 
manner (these are similar to common geometries of a ship 
hull and of offshore structures like breakwaters and floating 
piers). Further, the characteristics of the equilibrium curves of 
a parabolic cylinder with arbitrary profile are extended. With 
respect to the previous results provided by Gilbert[1], several 
different characteristics of the equilibrium curve are observed 
and explained in terms of physics. Furthermore, the floating 
state of a uniform square prism has been investigated by 
experiments which validate the theoretical results and provide 
an experimental impression of the interesting phenomenon 
that a symmetric floating geometry could float asymmetrically 
in certain conditions. The present work could be regarded as 

a preliminary for an extensive study of the floating stability of 
various more complex floating structures, and demonstrates 
the asymmetric floating state could be induced by improper 
loading and design of a floating body with a  symmetric 
sectional profile.

MATHEMATIC MODELLING  
OF FLOATING EQUILIBRIUM

As shown in Fig. 1, the floating state of a uniform square 
prism can be represented by its transversal section under 
the assumption of its being a uniform body. According to 
Archimedes’ principle, the ratio of the draught T to the depth 
D equals the ratio of the body’s density ρ to the density ρw of 
the water, which is denoted by λ (λ = T/D = ρ/ρw). To identify 
the waterline, a vector n0 is defined normal to the original 
waterline (blueline) and oriented into the air. Then, the vector 
can be formulated as n(-sinθ, cosθ) where θ denotes the angle of 
inclination relative to the upright state. Setting the origin O(0,0) 
fixed on the centroid of the immersed edge, the coordinate of 
the centre of gravity G(0, D/2) and buoyancy B0(0, T/2) can 
be formulated at the upright state. Also, any arbitrary centre 
of buoyancy B(By, Bz) can be formulated as a function of λ and 
θ. It should be noted that the meta-centre M will move along 
with B until an equilibrium is reached.

The floating states can be classified into two categories 
according to the geometry of the submerged volume, namely the 
quadrilateral prism (state 1) or triangular prism (state 2 which 
includes the critical state). A critical state can be recognized 
between the states 1 and 2, corresponding to a triangular prism 
of replacement volume. The floating angle of the critical state 
can be formulated as θc = tan-1(2λ). To reach a stable floating 
equilibrium, both the force balance and stability condition 
should be satisfied, namely BG//n and the vertical coordinate 
Mz > Gz. Thus, the possible floating equilibria can be sought 
through the variation of λ and θ. Since the floating state is 
symmetric, the observed range can be reduced to λ  (0, 1/2] 
and θ  [0, π/4].

Fig. 1. Illustration of a floating square prism: the green area indicates  
the equivalent displaced volume of water due to the tilted angle θ;  

the dashed lines refer to different cases of floating states  
(in anti-clockwise order: state 1  critical state θc  state 2  π/4).
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At state 1, i.e., θ  [0, θc), the following formulation can be 
obtained according to Archimedes’ principle and the law of the 
translation of the centre of gravity:

(B – B0)V = ΔbΔv     (1)

where B0 and B refer to the two-dimensional coordinates of the 
buoyancy centre in the upright and inclined states, respectively. 
As shown in Fig. 1, b indicates the centre of equivalently 
translated volume Δv with respect to the total submerged 
volume V. Substituting the force balance condition BG//n into 
Eq. (1), one obtains

θ = cos–1( 1
12λ(1–λ)–1 )     (2)

which is valid in the domain λ  [3–√−3
6 , 1/2]. Assuming the 

condition θ < θc (θc = tan-1(2λ)), the domain can be further 
reduced to λ  [3–√−3

6 , 1/4]. Accordingly, the stable equilibrium 
θ = 0 can be obtained in the domain λ  (0, (3–√−3)/6).

At state 2, the immersed section becomes a triangle in the 
domain θ   [θc, π/4]. It should be noted that the point Oʹ is 
not the rotating axis of the flotation plane in this case. Thus, 
the method of equivalent volume displacement is not available 
in this case. Employing to the condition BG//n, one obtains

θ = 1
2sin–1( 16λ

9–16λ)      (3)

which is valid in the domain λ  [0,  9/32]. Assuming  
θ ≥ θc = tan-1(2λ), the domain can be reduced to λ  [1/4, 9/32]. 
Analogously, the equilibrium θ = π/4 can be derived in the 
domain λ  [9/32, 1/2].

In conclusion, the following formula is derived as a function 
of the angle of inclination θ and the draught ratio λ:

θ = 

0,        λ  (0, 3–√−3
6  ]

cos–1( 1
12λ(1–λ)–1 ), λ  (3–√−3

6 , 1
4  ]

1
2sin–1( 16λ

9–16λ),    λ  ( 1
4 , 9

32 ]

π/4,        λ  ( 9
32, 1

2  ]

  (4)

As shown in Fig. 2, the stable equilibrium angle θ versus 
λ is plotted. Notably, there are three inf lection points (A, B 
and C) on the equilibrium curve in the domain λ  [0, 1/2]. 
Observing the curve, one can see the discontinuity at points 
A and C, which implies severe change of f loating state across 
these points. Comparing this curve with the curve obtained 
by Gilbert[1], the present curve coincides with it before the 
inf lection point B, but behaves differently approaching 
to the peak angle, yielding two extra inf lections points 
(B and C).

Fig. 2. The comparison of the present equilibrium  
curve with that of Gilbert [1].

Further, to analyse the implication of the inflection point A, 
equation (2) can be expressed as

θ = cos–1(x)       (5)

where x =  12λ(1–λ)–1. Taking the derivative of λ, equation 
(5) can be rewritten as

dθ
dλ  = 

1–x2
6x2(1–2λ)         (6)

According to equation (5), one can see that x approaches 
1 and θ approaches zero when λ approaches (3± √−3)/6. From 
equation (6), one can see the derivative will approach infinity 
when x approaches 1, which means it is a singularity and the 
slope approaches π/2 at point A.

Similarly, for the inflection point C, equation (3) can be 
rewritten as

θ = 1
2sin–1(x)        (7)

where x = 16λ/(9–16λ). Taking the derivative of λ, equation 
(7) yields

dθ
dλ  = 1–x2(9–16λ)2

72       (8)

so, analogously, one can find that the derivative will approach 
infinity as θ approaches π/4, which implies there is also 
a singularity whose slope approaches π/2 at point C. As a result, 
θ varies severely when λ approaches these singularities.

Meanwhile, the inflection point B is associated to a transitional 
floating state between states 1 and 2, corresponding to the 
critical stable equilibrium θ = θc. Combining equation (6) and 
equation (8), the identical real derivative (dθ/dλ = 4.8) can be 
obtained approaching from both the increasing and decreasing 
direction. This implies the floating state varies continuously 
across the inflection point.

PRISM WITH ARBITRARY  
RECTANGULAR SECTION

The equilibrium curve of a prism with arbitrary rectangulare 
section can be explored extensively. As shown in Fig. 3, the 
section of the prism has breadth D and width W (we assume 
W > D). Therefore, the prism will tend to float on the larger 
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angle which could yield an inflection point. Note that there are 
two non-zero inflection points for each curve in the domain  
λ  [0, 0.5]. Specifically, one inflection point approaches to 
around 25° and the other one approaches 45° with an increase 
of D/W. As shown in Fig. 4(b), the distribution of inflection 
points can be regressed into a linear function (θ = 73.1 λ +8.2), 
except for the singular inflection point of D/W = 1.

Fig. 4. The distribution of equilibrium curves and corresponding inflection  
points: (a) equilibrium curves for different sectional aspect ratios;  

(b) the distribution of inflection points and regressed function.

PARABOLIC CYLINDER

To illustrate the potential applications in naval and ocean 
engineering, the study of equilibrium is further extended 
to floating parabolic cylinders. As shown in Fig.  5, the 
parabolic profile curve can be assumed as the cross-section 
of a ship. To present the approach in a simplified manner, the 
cylinder is assumed uniform and then the centre of gravity  
G(0, T(3D2–5L2)/5DL2) can be derived, where T, D and L refer 
to the draught, breadth and the width of the flotation plane in 
the upright state, respectively.

Fig. 5. Schematic section of a floating parabolic cylinder.

To generalize the derivation, the parabolic profile is written 
in a non-dimensional formula:

Z = KY2–N       (10)

where Z = z/D and Y = y/D. The parameters K and N can be 
formulated as follows:

K = 4TD
L2

     (11)
N = TD

Further, the area of the immersed section can be derived 
as A = 2TL/3D2. As illustrated in Fig. 5, assuming the cylinder 

face to be at the minimum of potential energy [1]. Likewise, the 
relation between θ and the upright draught T can be derived 
as listed in Table 1, where the floating equilibrium is found 
dependent on the aspect ratio (D/W) and upright draught T. 
The critical draughts T1, T2 and T3 are formulated as follows:

T1 = 9D2–6W23D–
6 ;

T2 = 9D2–8W23D–
8 ;

T3 = 9D2–8W23D+
8       (9)

Fig. 3. Illustration of a floating prism with arbitrary rectangular section:  
the dashed lines refer to varied floating states (in anti-clockwise order,  

state 1→critical state θc→state 2→π/4)

Tab. 1. The floating equilibria for prism with arbitrary rectangular section

Analogously, the floating equilibria can be derived in terms of 
the sectional aspect ratio, assuming the symmetry of the floating 
state. Furthermore, the equilibrium curves of a prism with varied 
aspect ratios (D/W) can be derived where the inflection points 
(the non-zero inflection points) can be observed distributed 
along lines as shown in Fig. 4. According to Fig. 4(a), a non-zero 
floating angle exists when the aspect ratio D/W is approximately 
larger than 0.82, which implies that asymmetrical floating states 
tend to occur at relatively large values of D/W. Otherwise, 
the prism would float symmetrically at any draught. That’s 
why in most circumstances, only symmetric floating states are 
observed. Interestingly, the equilibrium curve is smooth when 
the sectional aspect ratio is less than around 0.96. Under this 
circumstance, the angle of inclination is less than the critical 
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floats stably at an angle of inclination θ, the buoyancy centre 
translates from B to Bʹ and the floatation line P0S0 becomes PʹSʹ. 
For each specified floating cylinder, the maximum inclination 
angle θc is defined as the topside of the cylinder’s contact with the 
water, yielding the corresponding flotation line PcSc. According 
to the conservation of the displaced volume and equation (10), 
the abscissas of the endpoints (Pʹ and Sʹ) at inclination angle θ 
can be formulated as follows:

Ypʹ = – L
2D  + L2

8TD  tanθ     (12)

Ysʹ = L
2D  + L2

8TD  tanθ      (13)

In addition, θc can be obtained when Y = ½: 

θc = tan–1(4T(D+ L)
L2 )     (14)

Therefore, the coordinate of the buoyancy centre can be 
obtained by calculating the double integral over the immersed 
section[13], taking into consideration the conservation of the 
area A of the immersed section. The coordinate of the buoyancy 
centre B can be formulated as follows:

YBʹ =YF + D2

A [ 1
12L3

θ sinθ cos2θ+∫ Ysʹ

Ypʹ
(YF –Y)ZdY] (15)

ZBʹ =ZF + D2

A [1
2 Lθ( 1

12L2
θ sin2θ –Z2

F)cosθ+

+∫ Ysʹ

Ypʹ
(ZFZ–1

2 Z2)dY]     (16)

where Lθ = (Ysʹ – Ypʹ)is to the length of the flotation line at an 
inclination angle of θ. Point F refers to the flotation centre, 
which is located at the centre of the line PʹSʹ Therefore, the 
coordinates of F are

YF = L2

8TD  tanθ       (17)

ZF = L2

16TD  tan2θ      (18)

Substituting equations (10), (12), (13), (17) and (18) into 
equations (15) and (16), the coordinate of Bʹ can be derived 
as follows:

YBʹ = L2

8TD  tanθ      (19)

ZBʹ = – 5D
2T  + L2

16TD  tan2θ    (20)

Note that the abscissas of Bʹ and F are identical[2]. According 
to Bouguer’s theorem[16], the distance between Bʹ and the 
metacentre M can be expressed as follows:

dM
Bʹ = I

V       (21)

where I and V refer to the moment of inertia of the plane 
of flotation and the immersed volume, respectively. Taking 
into consideration the homogeneity of the cylinder in the 
longitudinal direction, equation (19) can be simplified to

dM
Bʹ = RA       (22)

where R denotes the moment of inertia of the flotation line with 
respect to F, which can be calculated as follows:

R = ∫
1
2 Lθ
1
2 Lθ–  s2ds = 1

12L3
θ     (23)

where Lθ is the flotation line at an inclination angle of θ, which 
can be written as (Ysʹ – Ypʹ)/cosθ. Substituting equations (19), 
(20) and (23) into equation (22), the coordinates of M can be 
derived:

YM = L2

8TD  tan3θ       (24)

ZM = – 5D
2T  + L2

16TD  (cos2θ
3  –1)   (25)

To investigate the characteristics of the equilibrium curve 
practically, we confine the parameter K  [2, 3]. Similarly, we use 
the relative density λ as the variant; it can be obtained as follows:

λ = ρ
ρω

 = D(D2–L2)
L3

      (26)

According to equation (26), we can obtain the relation between 
the normalized draught and flotation line T/D = KL2/4D2. The 
equilibrium can be calculated by the conditions of force balance 
and stability as described before. Furthermore, the equilibrium 
curve can be derived along with L/D  (0, 1]. Fig. 6(a) shows 
the profiles of a series of parabolic cylinders in the range  
K  [2, 3]. The corresponding stable equilibrium curves are 
given in Fig. 6(b), where one can recognize the continuity of the 
equilibrium curves, located between approximately 60 degrees 
to 70 degrees. Also, the angle of inclination is increasing with 
an increase in the topological parameter K. Exploring a broader 
range of K, the equilibrium curve is found to be discontinuous 
(inflection points exist) for K around 1 (as shown in Fig. 7). 
Fig. 8 shows more profiles and their corresponding equilibrium 
curves around K = 1, through which the inflection point is found 
to be in the range K  [0.9, 1.7]. Taking the parabolic cylinder 
as a vessel, we can conclude that the draught span for stable 
upright flotation is wider when the block coefficient becomes 
larger. As shown in Fig. 8(c), the distribution of the inflection 
points can be further formulated as

θ = –1.71 ln(λ) + 55.684    (27)

where λ  (0, 1]. The above formulation can be applied to 
estimate the angle of inclination for a specified draught when 
a discontinuity exists in the equilibrium curve. Those inflection 
points should be noted during the operation of the ship to avoid 
a severe variation of the floating state.

Fig. 6. Profiles of a series of parabolic cylinders (a) and their corresponding 
equilibrium curves (b) for K [2, 3].
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Fig. 7. The distribution of equilibrium curves (a) and corresponding 
profiles (b) for K [1, 10].

Fig. 8. A series of equilibrium curves (a) for K [[0.8, 1.7], where the distribution 
of the inflection points (labeled by rectangles in (a)) is regressed (b).

EXPERIMENTAL VERIFICATION

To verify these theoretical results, an experiment was 
conducted in the flume of the laboratory LOC (Laboratório 
de Ondas e Correntes) of the Federal University of Rio de 
Janeiro. As shown in Fig. 9, a hollow square prism with 5×5 
grid was designed to simulate a uniform prism whose weight 
can be adjusted by filling the grids symmetrically with ballast. 
In these tests, uniform iron bars with different diameters were 
applied as ballast: their lengths are identical to that of the prism. 
Waterproof foam lids were used on both ends. The minimum 
relative density of the prism (i.e., a hollow prism) was 0.06 and 
the maximum about 0.87, as listed in Table 2. For each round 
of testing, the prism was released from an upright state and 
the inclination angle measured after the reaching of a stable 
floating state. As shown in Fig. 10, various floating states can 
be observed, including several asymmetrical ones.

Fig 9. The hollow model with 5×5 grid structure (left) and the practical 
prism model with lids prepared for testing (right).

Tab. 2. The test matrix and stable floating angle.

Case Relative
density

Stable
angle(°) Case Relative

density
Stable

angle(°)

1 0.06 0 10 0.46 45

2 0.20 13 11 0.51 45

3 0.23 24 12 0.56 45

4 0.26 28 13 0.61 45

5 0.29 31 14 0.67 44

6 0.32 44 15 0.72 42

7 0.36 44 16 0.76 27

8 0.39 45 17 0.81 14

9 0.42 45 18 0.87 1

Fig. 10. The typical floating states corresponding to the cases in Table 2.

As shown in Fig. 11, the experimental results have been 
compared with the analytical results and the results of [1]. 
Overall, the present analytical results agree better with the 
experimental results than do those of [1]. It can be noted that 
the scatter of the experimental results deviates slightly from the 
analytical results near the inflection points. This is because the 
floating state becomes quite sensitive to the relative density near 
those inflection points. The experimental uncertainty should 
also be responsible for the deviation, due to the machining and 
assembly error of the square prism. Further, the symmetry of the 
floating equilibrium curve is also verified by the experimental 
results, with respect to the centerline at ρ/ρw = 0.5. It is worth 
noting that the inflection points revealed in the present work 
make the equilibrium curve possess a significant ‘plateau’ and 
narrow transition range from θ = 0° to 45°. According to the 
present floating equilibrium curve, one should note that the 
magnitude of draught of floating body could affect the stable 
floating state significantly, which, for many floating structures, 
must be strictly supervised to avoid operational risks. For 
example, the relative density of a fully loaded cubic barge is 
usually larger than 0.8, thus its normal stable floating angle is 
zero. However, improper loading could make the relative density 
collapse to 0.2~0.8. Therefore, an initial inclination of the vessel 
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may occur which could lead to capsizing. In conclusion, the 
equilibrium curve should be considered by the designer and 
operator of floating structures whose relative density or weight 
could be varied frequently, in addition to the use the equilibrium 
curves to adjust the floating state actively.

Fig. 11. Comparison of analytical and experimental results

CONCLUSIONS

In the present article, the phenomenon that symmetric 
geometries can float asymmetrically has been studied analytically 
and experimentally. The intact floating equilibrium curve for 
a prism and a parabolic cylinder have been derived in detail, 
finding several characteristics which are revealed as different 
from those found in the literature. The characteristics of the 
inflection points in the equilibrium curve have been analysed, 
providing an improved interpretation of them in physical terms. 
Generalizing these results, the analysis of floating equilibria 
has been extended to prisms with arbitrary rectangular 
section. Some interesting features are revealed concerning 
the distribution of the equilibrium curves corresponding to 
a series of sectional aspect ratios. To illustrate the case of a vessel, 
the floating equilibrium of a parabolic cylinder was further 
investigated. The characteristics of its equilibrium curves have 
been obtained analytically, which could be meaningful to the 
design of floating structures in naval and ocean engineering. 

Moreover, to verify the floating equilibrium curve, 
experiments were conducted with a uniform square prism with 
adjustable relative density. According to the experimental results, 
good agreement is reached relative to the presented analytical 
results. In terms of the applications of equilibrium curves, the 
behaviour of the floating equilibrium should be understood and 
could be taken advantage of to avoid a damaging event of floating 
structures and enhance the efficiency of operation, especially for 
those floating vessels with a frequent variation of loading. The 
present study illustrates an approach to comprehend the floating 
equilibrium through several fundamental geometries, which 
can be extended to the investigation of the floating equilibrium 
of more complex geometries in future work. Besides, the two-
dimensional floating state should also be considered in the 
future, namely considering both transversal and longitudinal 
inclination simultaneously, which will be more practical for 
applications.
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