Warianty tytułu
Odporne sterowanie stabilizatora systemu zasilania przy użyciu trybu ślizgowego
Języki publikacji
Abstrakty
This paper proposes a method of sliding mode control (SMC) approach for excitation control in a single generator-infinite bus power system. Conventional power system stabilizer (C-PSS) design becomes a complicated problem in presence of internal and external disturbances to the excitation of a power system. Improving the stability of the power system has become a priority objective. The aim of this work is to ensure maximum damping of the electromechanical oscillations of the Single Machine Infinity Bus System (SMIB) by the power stabilizers based on the sliding mode control technique. The effectiveness of the proposed approach is demonstrated through computer simulations on two different cases of operating conditions. The performance of the proposed approach is evaluated in terms of damping power system oscillations. The obtained results show the high performance of the proposed controller to improve the stability of the power system compared to the C-PSS and found to be impressive.
W artykule zaproponowano metodę sterowania trybem ślizgowym (SMC) do sterowania wzbudzeniem w pojedynczym generatorowonieskończonym systemie zasilania szyny. Konstrukcja konwencjonalnego stabilizatora systemu elektroenergetycznego (C-PSS) staje się skomplikowanym problemem w obecności wewnętrznych i zewnętrznych zakłóceń wzbudzenia systemu elektroenergetycznego. Poprawa stabilności systemu elektroenergetycznego stała się celem priorytetowym. Celem pracy jest zapewnienie maksymalnego tłumienia oscylacji elektromechanicznych systemu SMIB (Single Machine Infinity Bus System) przez stabilizatory mocy oparte na technice sterowania ślizgowego. Skuteczność proponowanego podejścia demonstrowana jest poprzez symulacje komputerowe w dwóch różnych przypadkach warunków pracy. Skuteczność proponowanego podejścia oceniana jest pod kątem tłumienia oscylacji systemu elektroenergetycznego. Uzyskane wyniki wskazują na wysoką wydajność proponowanego sterownika w celu poprawy stabilności systemu elektroenergetycznego w porównaniu z C-PSS i okazały się imponujące.
Czasopismo
Rocznik
Tom
Strony
82--86
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- IRECOM Laboratory, Department of Electrical Engineering, Djillali Liabes University of Sidi Bel Abbes,22000, Algeria, de_imene@yahoo.fr
autor
- IRECOM Laboratory, Department of Electrical Engineering, Djillali Liabes University of Sidi Bel Abbes,22000, Algeria, irecom_abid@yahoo.fr
autor
- IRECOM Laboratory, Department of Electrical Engineering, Djillali Liabes University of Sidi Bel Abbes,22000, Algeria, irecom_aissaoui@yahoo.fr
autor
- IRECOM Laboratory, Department of Electrical Engineering, Djillali Liabes University of Sidi Bel Abbes,22000, Algeria, irecom_aissaoui@yahoo.fr
Bibliografia
- [1] Prabha K., John P., Venkat A., Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions, IEEE trans. on Power Systems, 19 (2004), No. 3, 1387-1401.
- [2] Ling C., Yuanwei J., Yang L., Design of adaptive H∞ controller for power system based on prescribed performance, ISA transactions, 100 (2020), 244-250.
- [3] Brahim D., Lakhdar M., Mohamed M., A New Cascade Fuzzy Power System Stabilizer for Multi-machine System Stability Enhancement, Journal of Control, Automation and Electrical Systems, 30 (2019), No 5, 765-779.
- [4] Yazdan B., Hêmin G., Automatic voltage regulator design using a modified adaptive optimal approach, International Journal of Electrical Power & Energy Systems, 104 (2019), 349-357.
- [5] Yonghui N., Yidan Z., Yan Z., Wide-area optimal damping control for power systems based on the ITAE criterion, International Journal of Electrical Power & Energy Systems, 106 (2019), 192-200.
- [6] Bhagyesh P., SAMPATH V., MohashaIsuru L.P., Ashok K., Decentralized nonlinear model predictive control of a multimachine power system, International Journal of Electrical Power & Energy Systems, 106 (2019), 358-372.
- [7] Tapan P., Pratap S.V., Soumya M., A synchrophasor measurement based wide-area power system stabilizer design for inter-area oscillation damping considering variable timedelays, International Journal of Electrical Power & Energy Systems, 105 (2019), 131-141.
- [8] Meysam R., Seyedtabaii S., Multi-machine optimal power system stabilizers design based on system stability and nonlinearity indices using Hyper-Spherical Search method, International Journal of Electrical Power & Energy Systems, 105 (2019), 729-740.
- [9] Mithuet S., Bidyadhar S., Fixed low-order synchronized and non-synchronized wide-area damping controllers for inter-area oscillation in power system, International Journal of Electrical Power & Energy Systems, 113 (2019), 582-596.
- [10] Jerković Š.V., Muharem M., Interconnection and damping assignment automatic voltage regulator for synchronous generators, International Journal of Electrical Power & Energy Systems, 101 (2018), 204-212.
- [11] Ajit K., Damping enhancement for smib power system equipped with partial feedback linearization, avr. In: 2018 20th National Power Systems Conference (NPSC). IEEE, (2018). 1-6.
- [12] ZeyadAssi O., Cipcigan L.M., Mazin M., Power system oscillations and control: Classifications and PSSs’ design methods: A review, Renewable and Sustainable Energy Reviews, 79 (2017), 839-849.
- [13] Jawaharlal B., Vasundhara M., Optimization of damping controller for PSS and SSSC to improve stability of interconnected system with DFIG based wind farm, International Journal of Electrical Power & Energy Systems, 108 (2019), 314-335.
- [14] Anouar F., Tawfik G., HsanHadj A., A new method for the coordinated design of power system damping controllers, Engineering Applications of Artificial Intelligence, 64 (2017), 325-339.
- [15] Kumar S. D., Rajendra P., A novel fuzzy rule matrix design for fuzzy logic-based power system stabilizer,” Electric Power Components and Systems, 45 (2017), No. 1, 34-48.
- [16] Koochaki A., Skandarnezhad A., Mohammadmoradi Y., Salimi S., Multi-machine power system fuzzy stabilizer design using Cuckoo search algorithm, Przeglad Elektrotechniczny, 3 (2016), 1-15.
- [17] BOUCHAMA Z., HARMAS M.N., Optimal robust adaptive fuzzy synergetic power system stabilizer design, Electric Power Systems Research, 83 (2012), No. 1, 170-175.
- [18] Sukumar K., Gerald S., Reza Y., A novel system-centric intelligent adaptive control architecture for power system stabilizer based on adaptive neural networks, IEEE Systems Journal, 8 (2013), No. 4, 1074-1085.
- [19] R.G. Miguel and O.P. MALIK, “Power system stabilizer design using an online adaptive neurofuzzy controller with adaptive input link weights,” IEEE Trans. on Energy Conversion, 23 (2008), No. 3, 914-922.
- [20] Suraj Ankush D., Mandar Sudhir I., Padmakar R., Coordinated tuning of PSS with TCSC damping controller in single machine power system using PSO, In: 2018 2nd International Conference on Inventive Systems and Control (ICISC). IEEE, (2018). 301-306.
- [21] Sambariya D. K., Prasad R., Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm, International Journal of Electrical Power & Energy Systems, 61 (2014), 229-238.
- [22] Slotine, Li J.J.E., Applied nonlinear control, Prence Hall, USA, (1998).
- [23] ABDELKADER B., et WAHID B A., Modeling and control of photovoltaic system using sliding mode controle, comparative studies with conventional controls. Przeglad Elektrotechniczny, 2 (2020), 182-187.
- [24] Belila H., Boudjerda N., Boubakir A., Bahri I., Improved STATCOM efficiency using a hybrid technique based on sliding mode control and proportional integral control, Przeglad Elektrotechniczny, 10 (2020), 156-162.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-793fe97c-4784-478e-b80f-9451fd57ca1c