Warianty tytułu
Modeling nonlinear characteristics of wideband radio frequency amplifiers with variable supply voltage
Konferencja
Konferencja Radiokomunikacji i Teleinformatyki (11-13.09.2024 ; Poznań, Polska)
Języki publikacji
Abstrakty
Praca ma na celu zaproponowanie nowego modelu dla nieliniowej charakterystyki wzmacniacza radiowego ze zmiennym napięciem zasilania pracującym w szerokim zakresie częstotliwości. Przedstawiona została propozycja rozszerzonego modelu Rappa. Zaproponowany model zweryfikowano na podstawie pomiarów charakterystyk trzech różnych wzmacniaczy. Model ten może być wykorzystany do projektowania systemów 6G "świadomych" niedoskonałości układów wejściowo-wyjściowych.
The work aims to propose a new nonlinear characteristics model for a wideband radio amplifier of variable supply voltage. An extended Rapp model proposal is presented. The proposed model has been verified by measurements of three different amplifiers. This model can be used to design frontend-aware 6G systems.
Słowa kluczowe
Rocznik
Tom
Strony
389--396
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Politechnika Poznańska, Poznań, kornelia.kostrzewska@student.put.poznan.pl
autor
- Politechnika Poznańska, Poznań , pawel.kryszkiewicz@put.poznan.pl
Bibliografia
- [1] Al-Kanan, Haider, Li, Fu, Tafuri, Felice Francesco, 2017, “Extended saleh model for behavioral modeling of envelope tracking power amplifiers”. 2017 IE- EE 18th Wireless and Microwave Technology Conference (WAMICON), 1–4, IEEE.
- [2] Al-kanan, Haider, Tafuri, Felice, Li, Fu, 2018, “Hysteresis nonlinearity modeling and linearization approach for envelope tracking power amplifiers in wireless systems”. Microelectronics journal, 82: 101–107.
- [3] Boumaiza, Slim, Helaoui, Mohamed, Hammi, Oualid, Liu, Taijun, Ghannouchi, Fadhel M, 2007, “Systematic and adaptive characterization approach for behavior modeling and correction of dynamic nonlinear transmitters”. IEEE Transactions on Instrumentation and Measurement, 56 (6): 2203–2211.
- [4] Ghannouchi, Fadhel M., Hammi, Oualid, 2009, “Behavioral modeling and predistortion”. IEEE Microwave Magazine, 10 (7): 52–64.
- [5] Glock, Stefan, Rascher, Jochen, Sogl, Bernhard, Ussmueller, Thomas, Mueller, Jan-Erik, Weigel, Robert, 2015, “A memoryless semi-physical power amplifier behavioral model based on the correlation between am–am and am–pm distortions”. IEEE Transactions on Microwave Theory and Techniques, 63 (6): 1826–1835.
- [6] Glock, Stefan, Rascher, Jochen, Sogl, Bernhard, Ussmueller, Thomas, Mueller, Jan-Erik, Weigel, Robert, 2015, “A memoryless semi-physical power amplifier behavioral model based on the correlation between am–am and am–pm distortions”. IEEE Transactions on Microwave Theory and Techniques, 63 (6): 1826–1835.
- [7] Joung, Jingon, Ho, Chin Keong, Adachi, Koichi, Sun, Sumei, 2014, “A survey on power-amplifiercentric techniques for spectrum-and energy-efficient wireless communications”. IEEE Communications Surveys & Tutorials, 17 (1): 315–333.
- [8] Kim, Dongsu, Kang, Daehyun, Choi, Jinsung, Kim, Jooseung, Cho, Yunsung, Kim, Bumman, 2011, “Optimization for envelope shaped operation of envelope tracking power amplifier”. IEEE transactions on microwave theory and techniques, 59 (7): 1787–1795.
- [9] Kostrzewska, Kornelia, Kryszkiewicz, Pawel, 2024, “Power amplifier modeling framework for front-end-aware next-generation wireless networks”. Electronics, 13 (9): 1643.
- [10] Kryszkiewicz, Pawel, 2018, “Amplifier-coupled tone reservation for minimization of ofdm nonlinear distortion”. IEEE Transactions on Vehicular Technology, 67 (5): 4316–4324.
- [11] Kryszkiewicz, Pawel, Kliks, Adrian, Bogucka, Hanna, 2015, “Obtaining low out-of-band emission level of an nc-ofdm waveform in the sdr platform”. 2015 International Symposium on Wireless Communication Systems (ISWCS), 66–70, IEEE.
- [12] Kryszkiewicz, Pawel, Kostrzewska, Kornelia, 2024, “Measurements of nonlinearity characteristics and power consumption of 3 power amplifiers (ZFL- 2000+,ZX60-2534,ZX60-5916)”.
- [13] Li, Delong, Yu, Hui, 2016, “A new model for envelope tracking power amplifier modeling and digital predistortion”. 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), 1–5, IEEE
- [14] Mengozzi, Mattia, Angelotti, Alberto Maria, Gibiino, Gian Piero, Florian, Corrado, Santarelli, Alberto, 2021, “Joint dual-input digital predistortion of supply-modulated rf pa by surrogate-based multiobjective optimization”. IEEE Transactions on Microwave Theory and Techniques, 70 (1): 35–49.
- [15] Mini-Circuits, ZFL-2000+, “Power amplifier’s datasheet”. "https://www.minicircuits.com/pdfs/ZFL-2000+.pdf".
- [16] Mini-Circuits, ZX60-2534, “Power amplifier’s datasheet”. "https://www.minicircuits.com/pdfs/ZX60-2534MA+.pdf".
- [17] Mini-Circuits, ZX60-5916, “Power amplifier’s datasheet”. "https://www.minicircuits.com/pdfs/ZX60-5916MA+.pdf".
- [18] Nokia, 2016, “Realistic power amplifier model for the New Radio evaluation”. 3GPP doc. R4-163314.
- [19] Rohde & Schwarz, R&S FSL6, “Manual for the spectrum analyzer”. "https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_1/f/sfl_1/FSL_OperatingManual_en_12.pdf".
- [20] Tafuri, Felice Francesco, Sira, Daniel, Nielsen, Troels Studsgaard, Jensen, Ole Kiel, Mikkelsen, Jan Hvolgaard, Larsen, Torben, 2015, “Memory models for behavioral modeling and digital predistortion of envelope tracking power amplifiers”. Microprocessors and Microsystems, 39 (8): 879–888.
- [21] Thota, Sravanti, Kamatham, Yedukondalu, Paidimarry, Chandra Sekhar, 2020, “Analysis of hybrid papr reduction methods of ofdm signal for hpa models in wireless communications”. IEEE Access, 8: 22780–22791.
- [22] Thota, Sravanti, Kamatham, Yedukondalu, Paidimarry, Chandra Sekhar, 2020, “Analysis of hybrid papr reduction methods of ofdm signal for hpa models in wireless communications”. IEEE Access, 8: 22780–22791.
- [23] Wang, Feipeng, Yang, Annie Hueiching, Kimball, Donald F, Larson, Lawrence E, Asbeck, Peter M, 2005, “Design of wide-bandwidth envelope-tracking power amplifiers for ofdm applications”. IEEE Transactions on Microwave theory and techniques, 53 (4): 1244– 1255.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-79379fae-6402-47da-b1fe-99e9e5aec0ac