Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (17 ; 04-07.09.2022 ; Sofia, Bulgaria)
Języki publikacji
Abstrakty
We study an optimized Monte Carlo algorithm forsolving multidimensional integrals related to intelligent systems. Recently Shaowei Lin consider the difficult task of evaluating multidimensional integrals with very high dimensions which are important to machine learning for intelligent systems. Lin multidimensional integrals with 3 to 30 dimensions, related to applications in machine learning, will be evaluated with the presented optimized Monte Carlo algorithm and some advantageous of the method will be analyzed.
Rocznik
Tom
Strony
101--104
Opis fizyczny
Bibliogr. 10 poz., tab., wz.
Twórcy
autor
- Institute of Mathematics and Informatics Bulgarian Academy of Sciences 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, vtodorov@math.bas.bg
- Institute of Information and Communication Technologies Bulgarian Academy of Sciences 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
autor
- Institute of Information and Communication Technologies Bulgarian Academy of Sciences 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, ivdimov@bas.bg
autor
- Institute of Information and Communication Technologies Bulgarian Academy of Sciences 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, stefka@parallel.bas.bg
autor
- Institute of Information and Communication Technologies Bulgarian Academy of Sciences 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, rayna@parallel.bas.bg
autor
- Institute of Information and Communication Technologies Bulgarian Academy of Sciences 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, ceco@parallel.bas.bg
autor
- Institute of Mathematics and Informatics Bulgarian Academy of Sciences 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, stoyan@math.bas.bg
Bibliografia
- 1. Atanassov E. and Dimov I.T., A new optimal monte carlo method for calculating integrals of smooth functions, Journal of Monte Carlo Methods and Applications 5 (1999), no. 2, 149–167, https://doi.org/10.1515/mcma.1999.5.2.149.
- 2. Bratley P., Fox B., Algorithm 659: Implementing Sobol’s Quasirandom Sequence Generator, ACM Transactions on Mathematical Software, 14 (1), 1988, 88–100.
- 3. Dimov I., Monte Carlo Methods for Applied Scientists, New Jersey, London, Singapore, World Scientific, 2008, 291p.
- 4. Lin S., “Algebraic Methods for Evaluating Integrals in Bayesian Statistics,” Ph.D. dissertation, UC Berkeley, May 2011.
- 5. Lin, S., Sturmfels B., Xu Z.: Marginal Likelihood Integrals for Mixtures of Independence Models, Journal of Machine Learning Research, Vol. 10, pp. 1611-1631, 2009.
- 6. Minasny B., McBratney B.: A conditioned Latin hypercube method for sampling in the presence of ancillary information Journal Computers and Geosciences archive, Volume 32 Issue 9, November, 2006, Pages 1378-1388.
- 7. Paskov S.H., Computing high dimensional integrals with applications to finance, Technical report CUCS-023-94, Columbia University (1994).
- 8. Pencheva, V., Georgiev, I., & Asenov, A. (2021, February). Evaluation of passenger waiting time in public transport by using the Monte Carlo method. In AIP Conference Proceedings (Vol. 2321, No. 1, p. 030028). AIP Publishing LLC.
- 9. Song, J., Zhao, S., Ermon, S., A-nice-mc: Adversarial training for mcmc. In Advances in Neural Information Processing Systems, pp. 5140-5150, 2017.
- 10. Watanabe S., Algebraic analysis for nonidentifiable learning machines. NeuralComput.(13), pp. 899—933, April 2001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-7927bcfd-ed66-41c4-80d4-c7cef626fa03