Czasopismo
2020
|
Vol. 20, no. 4
|
366--371
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this study, polypropylene meltblown nonwoven fabrics with different structure parameters such as fiber diameter, pore size, and areal density were prepared by the industrial production line. The morphology of meltblown nonwoven fibers was evaluated by using scanning electron microscope, and the diameter of fibers was analyzed by using image-pro plus software from at least 200 measurements. The pore size of nonwoven fabric was characterized by a CFP-1500AE type pore size analyzer. The filtration efficiency and pressure drop were evaluated by TSI8130 automatic filter. The results showed that the pressure drop of nonwoven fabrics decreased with the increase in pore size; the filtration efficiency and the pressure drop had a positive correlation with the areal density. However, when the areal density is in the range of 27–29 g/m2, both filtration efficiency and pressure drop decreased with the increase of areal density; when the areal density was kept constant, the filtration efficiency decreased as the pore size decreased; when the pore size of the meltblown nonwoven fabric is less than 17 μm, the filtration efficiency increased as the pore diameter decreased; when the pore diameter of the nonwoven fabric is larger than 17 μm. In a wide range, the pressure drop decreased as the fiber diameter decreased.
Czasopismo
Rocznik
Tom
Strony
366--371
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
autor
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
autor
- Tongxiang Jianmin Filter Material Co. Ltd., ChongFu Economic Development Zone, Tongxiang 314511, China
autor
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
autor
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
autor
- Tongxiang Jianmin Filter Material Co. Ltd., ChongFu Economic Development Zone, Tongxiang 314511, China
autor
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, Liberec 46117, Czech Republic
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, Liberec 46117, Czech Republic
autor
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China, guocheng-zhu@hotmail.com
Bibliografia
- [1] Cheng, Z., Luo, L., Wang, S., et al. (2016). Status and characteristics of ambient PM2. 5 pollution in global megacities. Environment International, 89, 212-221.
- [2] Hoek, G., Krishnan, R. M., Beelen, R., et al. (2013). Long-term air pollution exposure and cardio-respiratory mortality: a review. Environmental Health, 12(1), 43.
- [3] PR Newswire. Nonwoven filter media market analysis by technology, by application and segment forecasts to 2024. PR Newswire US. 2016-09-22.
- [4] Ellison, C. J., Phatak, A., Giles, D. W., et al. (2007). Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer, 48(11), 3306-3316.
- [5] Wente, V. A. (1956). Superfine thermoplastic fibers. Industrial & Engineering Chemistry, 48(8), 1342-1346.
- [6] Kim, M. O., Park, T. Y. (2016). The manufacture and physical properties of Hanji Composite nonwovens utilizing the Hydroentanglement process. Fibers and Polymers, 17(6), 932-939.
- [7] Handbook of nonwovens. Woodhead Publishing, 2006.
- [8] Nonwoven fabrics: raw materials, manufacture, applications, characteristics, testing processes. John Wiley & Sons, 2006.
- [9] Hassan, M. A., Yeom, B. Y., Wilkie, A., et al. (2013). Fabrication of nanofiber meltblown membranes and their filtration properties. Journal of Membrane Science, 427, 336-344.
- [10] Tan, D. H, Zhou, C., Ellison, C. J., et al. (2010). Meltblown fibers: influence of viscosity and elasticity on diameter distribution. Journal of Non-Newtonian Fluid Mechanics, 165(15-16), 892-900.
- [11] Bin, Y., Xuyang, Z., Jinjin, K., et al. (2016). Influence of die-to-collector distance on structure and property of the PLA meltblowing web. Rare Metal Materials and Engineering, 45, 345-349.
- [12] Das, D., Das, S., Ishtiaque, S. M. (2014). Optimal design of nonwoven air filter media: effect of fibre shape. Fibers and Polymers, 15(7), 1456-1461.
- [13] Payen, J., Vroman, P., Lewandowski, M., et al. (2012). Influence of fiber diameter, fiber combinations and solid volume fraction on air filtration properties in nonwovens. Textile Research Journal, 82(19), 1948-1959.
- [14] Dolny, S., Rogozinski, T. (2014). Air flow resistance across nonwoven filter fabric covered with microfiber layer used in wood dust separation. Drewno. Prace Naukowe. Doniesienia. Komunikaty, 57(191):125-134.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-791f8068-e2b0-4299-bd45-809087009c2e