Warianty tytułu
Języki publikacji
Abstrakty
The Demyanov metric in the family of convex, compact sets in finite dimensional spaces has been recently extended to the family of convex, bounded sets – not necessarily closed. In this note it is shown that these spaces are not complete and a model for the completion is proposed. A full answer is given in R2 and the situation in higher dimensions is discussed.
Czasopismo
Rocznik
Tom
Strony
191--196
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Faculty of Mathematics & Computer Science, Adam Mickiewicz University, ul. Umultowska 87, 61-164 Poznań, Poland
autor
- Faculty of Mathematics & Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
autor
- Faculty of Mathematics & Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland, T.Rzezuchowski@mini.pw.edu.pl
Bibliografia
- [1] J. P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Germany, 1984.
- [2] R. Baier, E. Farkhi, Differences of convex compact sets in the space of directed sets. Part I: The space of directed sets, Set-Valued Anal. 9 (2001), 217–245.
- [3] V. F. Demyanov, A. M. Rubinov, Quasidifferentiability and Related Topics, Kluwer, Netherlands, 2000.
- [4] V. F. Demyanov, A. M. Rubinov, Constructive Nonsmooth Analysis, vol. 7 of Approximation & Optimization, Peter Lang, Frankfurt, 1995.
- [5] P. Diamond, P. Kloeden, A. Rubinov, A. Vladimirov, Comparative properties of three metrics in the space of compact convex sets, Set-Valued Anal. 5 (1997), 267–289.
- [6] A. Lesniewski, T. Rzezuchowski, The Demyanov metric for convex, bounded sets and existence of Lipschitzian selectors, to appear in J. Conv. Anal. 18 (2011), No. 3.
- [7] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-78df2617-124c-4d31-a88e-c0a58b78d11b