Warianty tytułu
Języki publikacji
Abstrakty
Seismic noise suppression plays an important role in seismic data processing and interpretation. The time–frequency peak fltering (TFPF) is a classical method for seismic noise attenuation defned in the time–frequency domain. Nevertheless, we obtain serious attenuation for the seismic signal amplitude when choosing a wide window of TFPF. It is an unsolved issue for TFPF to select a suitable window width for attenuating seismic noise efectively and preserving valid signal amplitude efectively. To overcome the disadvantage of TFPF, we introduce the empirical wavelet transform (EWT) to improve the fltered results produced by TFPF. We name the proposed seismic de-noising workfow as the TFPF based on EWT (TFPFEWT). We frst introduce EWT to decompose a non-stationary seismic trace into a couple of intrinsic mode functions (IMFs) with diferent dominant frequencies. Then, we apply TFPF to the chosen IMFs for noise attenuation, which are selected by using a defned reference formula. At last, we add the fltered IMFs and the unprocessed ones to obtain the fltered seismic signal. Synthetic data and 3D feld data examples prove the validity and efectiveness of the TFPF-EWT for both attenuating random noise and preserving valid seismic amplitude.
Czasopismo
Rocznik
Tom
Strony
425--434
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- National Engineering Laboratory for Ofshore Oil Exploration, Xi’an 710049, Shaanxi, China
autor
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- National Engineering Laboratory for Ofshore Oil Exploration, Xi’an 710049, Shaanxi, China
autor
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China, lijiasanshao@stu.xjtu.edu.cn
- National Engineering Laboratory for Ofshore Oil Exploration, Xi’an 710049, Shaanxi, China
autor
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- National Engineering Laboratory for Ofshore Oil Exploration, Xi’an 710049, Shaanxi, China
autor
- Geophysics Key Lab, Technology R&D Center, Research Institute of China National Ofshore Oil Corporation (CNOOC), and National Engineering Laboratory for Ofshore Oil Exploration, Beijing 10028, China
autor
- School of Earth Science and Technology, Southwest Petroleum University, Chengdu 610500, Sichuan, China
Bibliografia
- 1. Arnold M, Roessgen M, Boashash B (1994) Filtering real signals through frequency modulation and peak detection in the time-frequency plane. IEEE ICASSP 94:345–348
- 2. Bekara M, van der Baan M (2009) Random and coherent noise attenuation by empirical mode decomposition. Geophysics 74:V89–V98
- 3. Boashash B (2015) Time-frequency signal analysis and processing, 2nd edn. Elsevier, Amsterdam
- 4. Boashash B, Mesbah M (2004) Signal enhancement by time-frequency peak filtering. IEEE Trans Signal Process 52:929–937
- 5. Boashash B, O'shea PJ (1994) Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra. IEEE Trans Signal Process 42:216–220
- 6. Canales L (1984) Random noise reduction. In: 54th annal international meeting SEG, pp 525–527
- 7. Chen Y, Ma J (2014) Random noise attenuation by f–x empirical-mode decomposition predictive filtering. Geophysics 79:V81–V91
- 8. Chen Y, Zhang G, Gan S, Zhang C (2015) Enhancing seismic reflections using empirical mode decomposition in the flattened domain. J Appl Geophys 119:99–105
- 9. Colominas MA, Schlotthauer G, Torres ME (2014) Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed Signal Process Control 14:19–29
- 10. Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455
- 11. Fedi M, Lenarduzzi L, Primiceri R, Quarta T (2000) Localized denoising filtering Using the wavelet transform. Pure Appl Geophys 157:1463–1491
- 12. Gao J, Mao J, Chen W, Zheng Q (2006) On the denoising method of prestack seismic data in wavelet domain. Chin J Geophys CH 49:1155–1163
- 13. Gemechu D, Yuan H, Ma J (2017) Random noise attenuation using an improved anisotropic total variation regularization. J Appl Geophys 144:173–187
- 14. Gilles J (2013) Empirical wavelet transform. IEEE Trans Signal Process 61:3999–4010
- 15. Han J, van der Baan M (2013) Empirical mode decomposition for seismic time-frequency analysis. Geophysics 78:O9–O19
- 16. Harris PE, White RE (1997) Improving the performance of f–x prediction filtering at low signal-to-noise ratios. Geophys Prospect 45:269–302
- 17. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A 454:903–995
- 18. Li Z, Gao J (2016) Random noise attenuation by an amplitude-preserved time-frequency peak-based on empirical wavelet transform predictive filtering. In: 86th annual international meeting SEG, pp 16–21
- 19. Li F, Zhang B, Verma S, Marfurt KJ (2018) Seismic signal denoising using thresholded variational mode decomposition. Explor Geophys 49:450–461
- 20. Lin H, Li Y, Yang B (2007) Recovery of seismic events by time-frequency peak filtering. IEEE Int Conf Image Process 5:V441–V444
- 21. Lin H, Li Y, Yang B, Ma H (2013) Random denoising and signal nonlinearity approach by time-frequency peak filtering using weighted frequency reassignment. Geophysics 78:V229–V237
- 22. Lin H, Li Y, Yang B, Ma H, Zhang C (2014) Seismic random noise elimination by adaptive time-frequency peak filtering. IEEE Geosci Remote Sens Lett 11:337–341
- 23. Lin H, Li Y, Ma H, Yang B, Dai J (2015) Matching-pursuit-based spatial-trace time-frequency peak filtering for seismic random noise attenuation. IEEE Geosci Remote Sens Lett 12:394–398
- 24. Lin H, Li Y, Ma H, Xu L (2016) Simultaneous seismic random noise attenuation and signal preservation by optimal spatiotemporal TFPF. J Appl Geophys 128:123–130
- 25. Liu Y, Li Y, Lin H, Ma H (2014) An amplitude-preserved time–frequency peak filtering based on empirical mode decomposition for seismic random noise reduction. IEEE Geosci Remote Sens Lett 11:896–900
- 26. Liu N, Gao J, Zhang Z, Jiang X, Lv Q (2016a) High resolution characterization of geological structures using synchrosqueezing transform. Interpretation 5:T75–T85
- 27. Liu W, Cao S, Chen Y (2016b) Seismic time–frequency analysis via empirical wavelet transform. IEEE Geosci Remote Sens Lett 13:28–32
- 28. Liu Y, Dang B, Li Y, Lin H, Ma H (2016c) Applications of Savitzky–Golay filter for seismic random noise reduction. Acta Geophys 64:101–124
- 29. Liu W, Cao S, Wang Z (2017) Application of variational mode decomposition to seismic random noise reduction. J Geophys Eng 14:888–899
- 30. Liu N, Gao J, Jiang X, Zhang Z, Wang P (2018a) Seismic instantaneous frequency extraction based on the SST-MAW. J Geophys Eng 15:995–1007
- 31. Liu N, Gao J, Zhang B, Li F, Wang Q (2018b) Time-frequency analysis of seismic data using a three parameters S transform. IEEE Geosci Remote Sens Lett 15:142–146
- 32. Liu N, Gao J, Zhang B, Wang Q, Jiang X (2019) Self-adaptive generalized s-transform and its application in seismic time-frequency analysis. IEEE Trans Geosci Remote Sens 57:7849–7859
- 33. Naghizadeh M (2012) Seismic data interpolation and denoising in the frequency-wavenumber domain. Geophysics 77:V71–V80
- 34. Roessgen M, Boashash B (1994) Time–frequency peak filtering applied to FSK signals. In: IEEE-SP international symposium on time-frequency and time-scale analysis, vol 17, pp 516–519
- 35. Shan H, Ma J, Yang H (2009) Comparisons of wavelets, contourlets and curvelets in seismic denoising. Journal of Applied Geophysics 69:103–115
- 36. Ville J (1948) Théorie et applications de la notion de signal analytique. Cables et transmission 2:61–74
- 37. Wang Y (1999) Random noise attenuation using forward-backward linear prediction. J Seism Explor 8:133–142
- 38. Wang D, Gao J (2014) A new method for random noise attenuation in seismic data based on anisotropic fractional-gradient operators. J Appl Geophys 110:135–143
- 39. Wigner E (1932) On the quantum correction for thermodynamic equilibrium. Phys Rev 40:749–759
- 40. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41
- 41. Wu H, Zhang B, Lin T, Li F, Liu N (2019) White noise attenuation of seismic data by integrating variational mode decomposition and convolutional neural network. Geophysics 84:1–56
- 42. Yu P, Li Y, Lin H, Wu N (2016) Removal of random noise in seismic data by time-varying window-length time–frequency peak filtering. Acta Geophys 64:1703–1714
- 43. Yuan S, Wang S (2013) Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints. J Geophys Eng 10:025001
- 44. Yuan S, Wang S, Li G (2012) Random noise reduction using Bayesian inversion. J Geophys Eng 9:60–68
- 45. Yuan S, Wang S, Luo C, Wang T (2018) Inversion-based 3-D seismic de-noising for exploring spatial edges and spatio-temporal signal redundancy. IEEE Geosci Remote Sens Lett 15:1682–1686
- 46. Zahir M, Hussain B (2000) Adaptive instantaneous frequency estimation of multicomponent FM signal using quadratic time–frequency distributions. IEEE Trans Signal Process 50:657–660
- 47. Zhang B, Lin T, Guo S, Davogustto OE, Marfurt KJ (2016) Noise suppression of time-migrated gathers using prestack structure-oriented filtering. Interpretation 4:SG19–SG29
- 48. Zhou Q, Gao J, Wang Z, Li K (2016) Adaptive variable time fractional anisotropic diffusion filtering for seismic data noise attenuation. IEEE Trans Geosci Remote Sens 54:1905–1916
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-77f6a3a0-20b7-42ae-9ecb-a292ac90c29e