Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2019 | Vol. 67, no. 3 | 987--997
Tytuł artykułu

Effect of two distinct patches of Myriophyllum species on downstream turbulence in a natural river

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Velocity profiles upstream and downstream of two aquatic plant species that are similar in morphology but differ in patch structures were measured in a natural river. Turbulence statistics were analyzed after thorough data filtering. In the wake of the M. alterniflorum, which was a slender, 0.3 m wide and 1.2 m long patch of aspect ratio 1:4, there were distinctive peaks in both, turbulence intensity and turbulent kinetic energy, which indicated increased lateral mixing. In contrast to the M. alterniflorum, turbulence statistics in the wake of the M. spicatum, which was the larger, 2 m wide and 2.4 m long patch of aspect ratio 1:1.5, indicated increased lateral shear of a greater magnitude. The turbulent kinetic energy was diminished in the closest layer to the bed downstream the both plants, although, in the case of M. alterniflorum, the observed values were similar to those upstream. The occurrence of the mixing layer below the height of M. spicatum was visible in the power spectral density plot. In both cases, ejections in the wake diminished in favor of other coherent structures. The shape and configuration of a patch are decisive factors governing the occurrence of flow instabilities downstream of the patch.
Wydawca

Czasopismo
Rocznik
Strony
987--997
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland, rbialik@ibb.waw.pl
Bibliografia
  • 1. Aberle J, Järvelä J (2013) Flow resistance of emergent rigid and flexible floodplain vegetation. J Hydraul Res 51(1):33–45. https://doi.org/10.1080/00221686.2012.754795
  • 2. Aberle J, Järvelä J (2015) Hydrodynamics of vegetated channels. In: Rowiński P, Radecki-Pawlik A (eds) Rivers: physical, fluvial and environmental processes. GeoPlanet: earth and planetary sciences. Springer, Cham, pp 519–541. https://doi.org/10.1007/978-3-319-17719-9_21
  • 3. Afzalimehr H, Barahimi M, Sui J (2017) Non-uniform flow over cobble bed with submerged vegetation strip. In Proceedings of the institution of civil engineers-water management. Thomas Telford Ltd, London, pp 1–16
  • 4. Bialik RJ (2013) Numerical study of near-bed turbulence structures influence on the initiation of saltating grains movement. J Hydrol Hydromech 61(3):202–207. https://doi.org/10.2478/johh-2013-0026
  • 5. Biggs H, Nikora VN, Papadopoulos K, Vettori D, Gibbins C, Kucher M (2016) Flow-vegetation interactions: a field study of ranunculus penicillatus at the large patch scale. In: Webb JA, Costelloe JF, Casas-Mulet R, Lyon JP, Stewardson MJ (eds.) Proceedings of the 11th international symposium on ecohydraulics, Melbourne, Australia, 7–12 Feb 2016 Paper number 26153
  • 6. Brand A, Noss C, Dinkiel C, Holzner M (2016) High-resolution measurements of turbulent flow close to the sediment-water interface using bistatic acoustic profiler. J Atmos Ocean Technol 33(4):769–788. https://doi.org/10.1175/JTECH-D-15-0152.1
  • 7. Cameron SM, Nikora VI, Albayrak I, Miler O, Stewart M, Siniscalchi F (2013) Interactions between aquatic plants and turbulent flow: a field study using stereoscopic PIV. J Fluid Mech 732:345–372. https://doi.org/10.1017/jfm.2013.406
  • 8. Cassan L, Belaud G, Baume JP, Dejean C, Moulin F (2015) Velocity profiles in a real vegetated channel. Environ Fluid Mech 15(6):1263–1279. https://doi.org/10.1007/s10652-015-9417-0
  • 9. Chen Z, Jiang C, Nepf H (2013) Flow adjustment at the leading edge of a submerged aquatic canopy. Water Resour Res 49(9):5537–5551. https://doi.org/10.1002/wrcr.20403
  • 10. Cornacchia L, Folkard A, Davies G, Grabowski RC, van de Koppel J, van der Wal D, Wharton G, Puijalon S, Bouma TJ (2018) Plants face the flow in V formation: a study of plant patch alignment in streams. Limnol Oceanogr. https://doi.org/10.1002/lno.11099
  • 11. Cotton JA, Wharton G, Bass JAB, Heppell CM, Wotton RS (2006) The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology 77(3–4):320–334. https://doi.org/10.1016/j.geomorph.2006.01.010
  • 12. Franca MJ, Santos BO, Antico F, Ferreira RML (2014) Quadrant analysis of coherent structures in open channel flows over mobile and immobile hydraulically rough beds. ERCOFTAC Bull 100:29–36
  • 13. Ghisalberti M, Nepf H (2006) The structure of the shear layer in flows over rigid and flexible canopies. Environ Fluid Mech 6(3):277–301. https://doi.org/10.1007/s10652-006-0002-4
  • 14. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)
  • 15. Grass AJ (1971) Structural features of turbulent flow over smooth and rough boundaries. J Fluid Mech 50(2):233–255. https://doi.org/10.1017/S0022112071002556
  • 16. Green JC (2005) Modelling flow resistance in vegetated streams: review and development of new theory. Hydrol Process 19(6):1245–1259. https://doi.org/10.1002/hyp.5564
  • 17. Gurnell AM, Bertoldi W, Corenblit D (2012) Changing river channels: the roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci Rev 111(1–2):129–141. https://doi.org/10.1016/j.earscirev.2011.11.005
  • 18. Hu Z, Lei J, Liu C, Nepf H (2018) Wake structure and sediment deposition behind models of submerged vegetation with and without flexible leaves. Adv Water Resour 118:28–38. https://doi.org/10.1016/j.advwatres.2018.06.001
  • 19. Hurther D, Lemmin UA (2001) Correction method for turbulence measurements with a 3D acoustic Doppler velocity profiler. J Atmos Ocean Technol 18(3):446–458. https://doi.org/10.1175/1520-0426(2001)018%3c0446:ACMFTM%3e2.0.CO;2
  • 20. Kłosowski S, Kłosowski G (2007) Aquatic and marsh plants. MULTICO, Warsaw (in Polish)
  • 21. Koca K, Noss C, Anlanger C, Brand A, Lorke A (2017) Performance of the Vectrino Profiler at the sediment-water interface. J Hydraul Res 55(4):573–581. https://doi.org/10.1080/00221686.2016.1275049
  • 22. Kolmogorov AN (1991) Dissipation of energy in the locally isotropic turbulence. Proc R Soc Lond A 434(1890):15–17. https://doi.org/10.1098/rspa.1991.0076
  • 23. Kubrak E, Kubrak J, Kiczko A (2015) Experimental investigation of kinetic energy and momentum coefficients in regular channels with stiff and flexible elements simulating submerged vegetation. Acta Geophys 63:1405–1422. https://doi.org/10.1515/acgeo-2015-0053
  • 24. Liu D, Liu X, Fu X, Wang G (2016) Quantification of the bed load effects on turbulent open-channel flows. J Geophys Res Earth 121(4):767–789. https://doi.org/10.1002/2015JF003723
  • 25. Liu C, Hu Z, Lei J, Nepf H (2017) Vortex structure and sediment deposition in the wake behind a finite patch of model submerged vegetation. J Hydraul Eng 144(2):04017065. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001408
  • 26. Łoboda AM, Karpiński M, Bialik RJ (2018a) On the relationship between aquatic plant stem characteristics and drag force: is modeling application possible? Water 10(5):540. https://doi.org/10.3390/w10050540
  • 27. Łoboda AM, Przyborowski Ł, Karpiński M, Bialik RJ, Nikora VI (2018b) Biomechanical properties of aquatic plants: the effect of test conditions. Limnol Oceanogr Methods 16(4):222–236. https://doi.org/10.1002/lom3.10239
  • 28. Luchik TS, Tiederman WG (1987) Timescale and structure of ejections and bursts in turbulent channel flows. J Fluid Mech 174:529–552
  • 29. Naden P, Rameshwaran P, Mountford O, Robertson C (2006) The influence of macrophyte growth, typical of eutrophic conditions, on river flow velocities and turbulence production. Hydrol Process 20(18):3915–3938. https://doi.org/10.1002/hyp.6165
  • 30. Nepf HM (2012a) Hydrodynamics of vegetated channels. J Hydraul Res 50(3):262–279. https://doi.org/10.1080/0221686.2012.6965599
  • 31. Nepf HM (2012b) Flow and transport in regions with aquatic vegetation. Annu Rev Fluid Mech 44:123–142. https://doi.org/10.1146/annurev-fluid-120710-101048
  • 32. Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. IAHR-Monograph, Balkema
  • 33. Nikora V (2010) Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Res Appl 26(4):367–384. https://doi.org/10.1002/rra.1291
  • 34. Nikora V, Larned S, Nikora N, Debnath K, Cooper G, Reid M (2008) Hydraulic resistance due to aquatic vegetation in small streams: field study. J Hydraul Eng 134(9):1326–1332. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1326)
  • 35. Nikora N, Nikora V, O’Donoghue T (2013) Velocity profiles in vegetated open-channel flows: combined effects of multiple mechanisms. J Hydraul Eng 139(10):1021–1032. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000948
  • 36. O’Hare MT (2015) Aquatic vegetation: a primer for hydrodynamic specialists. J Hydraul Res 53(6):687–698. https://doi.org/10.1080/00221686.2015.1090493Google Scholar
  • 37. Ortiz AC, Ashton A, Nepf H (2013) Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. J Geoph Res Earth 118(4):2585–2599. https://doi.org/10.1002/2013JF002858
  • 38. Parsheh M, Sotiropoulos F, Porte-Agel F (2010) Estimation of power spectra of acoustic-Doppler velocimetry data contaminated with intermittent spikes. J Hydraul Eng ASCE 136(6):368–378. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000202
  • 39. Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004) The effect of vegetation density on canopy sub-layer turbulence. Bound Layer Meteorol 111(3):565–587. https://doi.org/10.1023/B:BOUN.0000016576.05621.73
  • 40. Przyborowski Ł, Łoboda AM, Bialik RJ (2018a) Experimental investigations of interactions between sand wave movements, flow structure, and individual aquatic plants in natural rivers: a case study of Potamogeton Pectinatus L. Water 10(9):1166. https://doi.org/10.3390/w10091166
  • 41. Przyborowski Ł, Łoboda AM, Karpiński M, Bialik RJ (2018b) Characteristics of flow around aquatic plants in natural conditions: experimental setup, challenges and difficulties. In: Kalinowska MB, Mrokowska MM, Rowiński PM (eds) Free surface flows and transport processes. GeoPlanet: earth and planetary sciences. Springer, Cham, pp 347–361. https://doi.org/10.1007/978-3-319-70914-7_23
  • 42. Rominger J, Nepf H (2011) Flow adjustment and interior flow associated with a rectangular porous obstruction. J Fluid Mech 680:636–659. https://doi.org/10.1017/jfm.2011.199
  • 43. Siniscalchi F, Nikora V (2013) Dynamic reconfiguration of aquatic plants and its interrelations with upstream turbulence and drag forces. J Hydraul Res 51(1):46–55. https://doi.org/10.1080/00221686.2012.743486
  • 44. Siniscalchi F, Nikora VI, Aberle J (2012) Plant patch hydrodynamics in streams: mean flow, turbulence, and drag forces. Water Resour Res. https://doi.org/10.1029/2011WR011050
  • 45. Sukhodolov AN (2015) Field-based research in fluvial hydraulics: potential, paradigms and challenges. J Hydraul Res 53(1):1–19. https://doi.org/10.1080/00221686.2015.1012126
  • 46. Sukhodolov AN, Sukhodolova TA (2012) Vegetated mixing layer around a finite‐size patch of submerged plants: Part 2. Turbulence statistics and structures. Water Resour Res. https://doi.org/10.1029/2011WR011805
  • 47. Sukhodolova TA, Sukhodolov AN (2012) Vegetated mixing layer around a finite‐size patch of submerged plants: 1. Theory and field experiments. Water Resour Res. https://doi.org/10.1029/2011WR011804
  • 48. Termini D, Di Leonardo A (2017) Turbulence structure and implications in exchange processes in high-amplitude vegetated meanders: experimental investigation. Adv Water Resour. https://doi.org/10.1016/j.advwatres.2017.11.020
  • 49. Thomas RE, Schindfessel L, McLelland SJ, Creëlle S, De Mulder T (2017) Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino Profiler. Meas Sci Technol. https://doi.org/10.1088/1361-6501/aa7273
  • 50. Tymiński T, Kałuża T (2012) Investigation of Mechanical Properties and Flow Resistance of Flexible Riverbank Vegetation. Pol J Environ Stud 21(1):201–207
  • 51. Västilä K, Järvelä J (2018) Characterizing natural riparian vegetation for modeling of flow and suspended sediment transport. J Soils Sediments 18(10):3114–3130. https://doi.org/10.1007/s11368-017-1776-3
  • 52. Västilä K, Järvelä J, Koivusalo H (2015) Flow–vegetation–sediment interaction in a cohesive compound channel. J Hydraul Eng 142(1):04015034. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001058
  • 53. Voulgaris G, Trowbridge JH (1998) Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J Atmos Ocean Technol 15(1):272–289. https://doi.org/10.1175/1520-0426(1998)015%3c0272:EOTADV%3e2.0.CO;2
  • 54. Wahl TL (2003) Discussion of ‘Despiking acoustic Doppler velocimeter data’ by Derek G. Goring and Vladimir I. Nikora. J Hydraul Eng 129(6):484–487. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(484)
  • 55. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE T Acoust Electr 15(2):70–73. https://doi.org/10.1109/TAU.1967.1161901
  • 56. Wilson SJ, Ricciardi A (2009) Epiphytic macroinvertebrate communities on Eurasian watermilfoil (Myriophyllum spicatum) and native milfoils Myriophyllum sibericum and Myriophyllum alterniflorum in eastern North America. Can J Fish Aquat Sci 66(1):18–30. https://doi.org/10.1139/F08-187
  • 57. Zong L, Nepf H (2012) Vortex development behind a finite porous obstruction in a channel. J Fluid Mech 691:368–391. https://doi.org/10.1017/jfm.2011.479
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-77eb308c-c72e-4d6e-be34-ff8be6496285
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.