Czasopismo
2016
|
Vol. 64, no. 1
|
69--83
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is to define some notions of movability for morphisms of inverse systems which extend the movability properties of inverse systems and which are compatible with the equivalence relations which define pro-morphisms and shape morphisms. Some properties and applications are given.
Rocznik
Tom
Strony
69--83
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Faculty of Mathematics, Moscow State Pedagogical University, 88, Vernadskogo St., Moscow, Russia, pgev@yandex.ru
autor
- Faculty of Mathematics, “Al. I. Cuza” University, 700505 Iaşi, Romania, ioanpop@uaic.ro
Bibliografia
- [1] T. A. Avakyan and P. S. Gevorgyan, Strong movable categories and strong movability of topological spaces, J. Contemp. Math. Anal. Armen. Acad. Sci. 45 (2010), 52–59.
- [2] K. Borsuk, On movable compacta, Fund. Math. 66 (1969/70), 137–146.
- [3] Z. Čerin, Lefschetz movable maps, J. Math. Pures Appl. 72 (1993), 81–103.
- [4] J.-M. Cordier and T. Porter, Shape Theory: Categorical Methods of Approximation, Ellis Horwood, 1989.
- [5] J. Dydak, The Whitehead and Smale theorems in shape theory, Dissertationes Math. 156 (1979), 55 pp.
- [6] A. D. Edwards and P. Tulley McAuley, The shape of a map, Fund. Math. 96 (1977), 195–210.
- [7] P. S. Gevorgyan, Movable categories, Glas. Mat. Ser. III 38 (2003), 177–183.
- [8] P. S. Gevorgyan, On a movability criterion, Math. Notes 71 (2002), 281–284.
- [9] P. S. Gevorgyan and I. Pop, Uniformly movable categories and uniform movability of topological spaces, Bull. Polish Acad. Sci. Math. 55 (2007), 229–242.
- [10] G. Higman, A finitely related group with an isomorphic proper factor group, J. London Math. Soc. 26 (1951), 59–61.
- [11] S. Mardešic and J. Segal, Movable compacta and ANR-systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 649–654.
- [12] S. Mardešic and J. Segal, Shape Theory. The Inverse System Approach, North-Holland, 1982.
- [13] K. Morita, On shapes of topological spaces, Fund. Math. 86 (1975), 251–259.
- [14] M. Moszyńska, Uniformly movable compact spaces and their algebraic properties, Fund. Math. 77 (1972), 125–144.
- [15] I. Pop, A categorical notion of movability, An. Ştiinţ. Univ. “Al. I. Cuza” Iaşi Mat. (N.S.) 49 (2003), 327–341.
- [16] I. Pop, On movability of pro-morphisms, An. Univ. Vest Timisoara Ser. Mat.-Inform. 48 (2010), 223–238.
- [17] I. Pop, New categorical approaches to movability in shape theory, An. Ştiinţ. Univ. “Al. I. Cuza” Iaşi Mat. 59 (2013), 25–42.
- [18] J. Roitberg, On weak epimorphisms in homotopy theory, Pacific J. Math. 121 (1986), 183–187.
- [19] T. Yagasaki, Fiber shape theory, Tsukuba J. Math. 9 (1985), 261–277.
- [20] T. Yagasaki, Movability of maps and shape fibrations, Glas. Mat. 21 (1986), 153–177.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-778b9845-67b4-45bb-8aec-7eca2a58147f