Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 26, nr 4 | 785--795
Tytuł artykułu

Effects of electromagnetic fields and their shielding on the quality of carrot (Daucus carota L.) seeds

Warianty tytułu
PL
Wpływ pól elektromagnetycznych oraz ich ekranowania na jakość nasion marchwi (Daucus carota L.)
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the effect of electromagnetic fields and their shielding on carrot seed quality. Three sectors were separated on the device emitting electromagnetic fields: “E” - sector emitting electromagnetic radiation with the predominance of the electrical component, “EM” - sector emitting electromagnetic radiation without domination of its components and “M” - sector with a predominance of magnetic component. Fields generated by the device were also shielded with ADR TEX screen, based on a nanocomposite in which the electric component of the electromagnetic radiation is absorbed by water dispersed in a dielectric matrix in various ways. The composites exhibit high dielectric absorption and shield electric fields within the frequency range from ~100 mHz to ~100 kHz. Seed germination and vigour were evaluated at 20 °C in darkness. Mycological analysis was performed using a deep-freeze blotter test. Exposure of seeds to radiation with the predominance of the electrical component and electromagnetic radiation without domination of its components combined with shielding of electromagnetic fields with ADR TEX (E+ADR TEX and EM+ADR TEX) increased seed germination energy and germination capacity compared to these treatments without shielding and control. The percentage of abnormal diseased seedlings in treatments with shielding of electromagnetic fields with ADR TEX (E+ADR TEX, EM+ADR TEX and M+ADR TEX) was significantly lower than in the treatments without shielding and in control. None of the treatments affected seed vigour. Generally, exposure of seeds to electromagnetic radiation did not influence the incidence of fungi.
Wydawca

Rocznik
Strony
785--795
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., tab.
Twórcy
  • Department of Entomology and Environmental Protection, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland, +48 618 466 336, romuald.gorski@up.poznan.pl
autor
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland,+48 618 466 384, hanna.dorna@up.poznan.pl
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland,+48 618 466 384
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland,+48 618 466 384
Bibliografia
  • [1] Araújo SdeS Paparella S Dondi D Bentivoglio A Carbonera D Balestrazzi A. Physical methods for seed invigoration: Advantages and challenges in seed technology. Front Plant Sci. 2016;12(7):646. DOI: 10.3389/fpls.2016.00646.
  • [2] Das R Bhattacharya R. Impact of electromagnetic field on seed germination. Proc XXVIIIth URSI General Assembly New Delhi India October 2005. ISBN Proceedings 8177649280. Paper KP.14(0983). www.ursi.org/proceedings/procGA05/pdf/KP.14(0983).pdf.
  • [3] Dannehl D. Effects of electricity on plant responses. Sci Hortic. 2018;234:382-92. DOI: 10.1016/j.scienta.2018.02.007.
  • [4] Pietruszewski S Kania K. Effect of magnetic field on germination and yield of wheat. Int Agrophys. 2010;24:297-302. http://www.old.international-agrophysics.org/artykuly/international_agrophysics/IntAgr_2010_24_3_297.pdf.
  • [5] Jedlička J Paulen O Ailer Š. Research of effect of low frequency magnetic field on germination growth and fruiting of field tomatoes. Acta Horticulturae et Regiotecturae 2015;1:1-4. DOI: 10.1515/ahr-2015-0001.
  • [6] Hasan GT Ali KJ Ahmad MA. Investigation the influence of magnetic field emitted by high voltage transmission lines on plant growth. Eur J Sci Res. 2011;56(2):272-8. https://www.researchgate.net/publication/289882505_Investigation_the_influence_of_magnetic_field_emitted_by_high_voltage_transmission_lines_on_plant_growth.
  • [7] Bhattacharya R Barman P. 132 KV high voltage power transmission line and stress on Brassica juncea. Int J Electronics Commun Technol. 2013;4(1):140-2. http://www.iject.org/vol4/spl1/c0047.pdf.
  • [8] Rochalska M Grabowska-Topczewska K Mackiewicz A. Influence of low magnetic field on improvement of seed quality. Int Agrophys. 2011;25(3):265-9. http://www.international-agrophysics.org/Influence-of-alternating-low-frequency-magnetic-field-on-improvement-of-seed-quality,106320,0,2.html.
  • [9] Balakhnina T Bulak P Nosalewicz M Pietruszewski S Włodarczyk T. The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination seedling growth and antioxidant potential under optimal soil watering and flooding. Acta Physiol Plant. 2015;37:59. DOI: 10.1007/s11738-015-1802-2.
  • [10] Vashisth A Singh R Joshi DK. Effect of static magnetic field on germination and seedling attributes in tomato (Solanum lycopersicum). J Agr Phys. 2013;13(2):182-5. https://pdfs.semanticscholar.org/2f8b/6dd294e2db9d567ccc390f63ed23bd4db2c9.pdf.
  • [11] Hozayn M El-Mahdy AAA Abdel-Rahman HMH. Effect of magnetic field on germination seedling growth and cytogenetic of onion (Allium cepa L.). Afr J Agric Res. 2015;10(8):849-57. DOI: 10.5897/AJAR2014.9383.
  • [12] Grzesik M Górnik K Janas R Lewandowski M Romanowska-Duda Z van Duijn B. High efficiency stratification of apple cultivar Ligol seed dormancy by phytohormones heat shock and pulsed radio frequency. J Plant Physiol. 2017;219:81-90. DOI: 10.1016/j.jplph.2017.09.007.
  • [13] Wosiński S. Solution for Impregnation of materials shielding low-frequency electric field and the shielding material. PAT.221223. http://regserv.uprp.pl/register/application?number=P.387274.
  • [14] Wosiński S. A composition for impregnating materials to shield against the effects of alternating electromagnetic fields its application in coating/impregnating fibrous and/or porous matrices and materials containing the same. Patent application 20170349765; 2017. https://patents.justia.com/patent/20170349765.
  • [15] International Rules for Seed Testing. Chapter 5: The germination test 2019;1:5-56. DOI: 10.15258/istarules.2019.05.
  • [16] Joosen RVL Kodde J Willems L Ligterink W Plas LHW van der Hilhorst HWM. Germinator: A software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J. 2010;62:148-59. DOI: 10.1111/j.1365-313X.2009.04116.x.
  • [17] Malone JP Muskett AE. Seed borne-fungi. Description of 77 fungus species. Proc Int Seed Test Ass.1964;29(2):179-384. https://pdfslide.net/documents/jp-malone-ae-muskett-seed-borne-fungi-descriptions-of-77-fungus-species.html.
  • [18] Watanabe T. Pictorial Atlas of Soil and Seed Fungi Morphologies of Cultured Fungi and Key to Species. Boca Raton London New York Washington: CRC Press; 2002. ISBN: 0849311187.
  • [19] Mathur SB Kongsdal O. Common Laboratory Seed Health Testing Methods for Detecting Fungi. Basserdorf Switzerland: International Seed Testing Association; 2003. ISBN: 3906549356.
  • [20] Dorna H Górski R Szopińska D Tylkowska K Jurga J Wosiński S et al. Effects of a permanent magnetic field together with the shielding of an alternating electric field on carrot seed vigour and germination. Ecol Chem Eng S. 2010;17(1):53-61. https://drive.google.com/file/d/1IfsFlFVf3-2vO1OlkNuu09220UjUAwWs/view.
  • [21] Racuciu M Creanga DE. Biological effects of low frequency electromagnetic field in Cucurbita pepo. Proceedings of the Third Moscow Int Symp Magnetism. 26-30 June 2005 Moscow Russia. 2005;278-82. http://magn.ru/proc/pdf/278.pdf.
  • [22] Pietruszewski S Muszyński S Dziwulska A. Electromagnetic fields and electromagnetic radiation as non-invasive external stimulants for seeds (selected methods and responses). Int Agrophys. 2007;21:95-100. http://www.international-agrophysics.org/Electromagnetic-fields-and-electromagnetic-radiation-as-noninvasive-external-stimulants,106532,0,2.html.
  • [23] Shabrangi A Majd A Sheidai M. Effects of extremely low frequency electromagnetic fields on growth cytogenetic protein content and antioxidant system of Zea mays L. Afr J Biotechnol. 2011;10(46):9362-9. DOI: 10.5897/AJB11.097.
  • [24] Shabrangi A Hassanpour H Majd A Sheidai M. Induction of genetic variation by electromagnetic fields in Zea mays L. and Brassica napus L. Caryologia 2015;68(4):272-9. DOI: 10.1080/00087114.2015.1109920.
  • [25] Królicka A Kartanowicz R Wosiński SA Szpitter A Kamiński M Łojkowska E. Induction of secondary matabolite production in transformer callus of Ammi majus L. grown after electromagnetic treatment of the cuture medium. Enzyme Microb Technol. 2006;39:1386-91. DOI: 10.1016/j.enzmictec.2006.03.042
  • [26] Afzal I Rehman HU Naveed M Basra SMA. Recent advanced in seed enhancements. In: New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology. 2016:47-74. DOI: 10.5772/64791.
  • [27] Grabowska K Detyna J Bujak H. Influence of alternating magnetic field on selected plant properties. In: Szrek J editor. Interdyscyplinarność badań naukowych [Interdysciplinarity of scientific research]. Wrocław: Ofic Wyd Politechniki Wrocławskiej; 2014;165-70. ISBN: 9878374938631. https://www.researchgate.net/publication/273633488.
  • [28] Zardzewiały M Zaguła G Puchalski C. Effects of pre-sowing magnetic stimulation on the growth development and changes in physicochemical properties in sugar beet seedlings. Teka Commission of Motorization and Power Industry in Agriculture 2014;14(4):201-10. http://www.czasopisma.pan.pl/dlibra/publication/106981/edition/92676/content/effects-of-pre-sowing-magnetic-stimulation-on-the-growth-development-and-changes-in-physicochemical-properties-in-sugar-beet-seedlings-zardzewialy-milosz-zagula-grzegorz-puchalski-czeslaw.
  • [29] Podleśna A Bojarszczuk J Podleśny J. Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in faba bean (Vicia faba L. spp. minor). J. Plant Growth Regul. 2019;38(3):1153-60. DOI: 10.1007/s00344-019-09920-1.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-77809fe9-ab28-460d-bc64-9fa76422a908
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.