Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 29, nr 4 | 463--475
Tytuł artykułu

The synthesis of 2,2-bis(1-indol-3-yl)acenaphthylene-1(2)-ones usingnanocatalysis : fluorescent sensing for Cu2+ ions

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
2,2-bis(1H-indol-3-yl)acenaphthylene-1(2H)-ones were synthesised by the reaction of acenaphthenequinone and 2 equivalents of indole using Fe3O4@SiO2@Si-Pr-NH-CH2CH2NH2 as the basic magnetic nanocatalyst, assembled under greener and sustainable conditions in high purity and yields. Furthermore, the photoluminescence properties of 2,2-bis(2-methyl-1H-indol-3-yl)acenaphthylene-1(2H)-one were exploited for the sensing of copper ions in the mixed solvent systems comprising H2O and CH3CN in excitation wavelength at 410 nm with a detection limit of 9.5 ∙ 10–6 M.
Wydawca

Rocznik
Strony
463--475
Opis fizyczny
Bibliogr. 82 poz., rys., tab., wykr.
Twórcy
  • Department of Organic Chemistry, Faculty of Chemistry, University of Alzahra, Tehran, Iran, P.O. Box: 1993893973, phone/fax: +98821 6613927, gmohammadi@alzahra.ac.ir
  • Department of Organic Chemistry, Faculty of Chemistry, University of Alzahra, Tehran, Iran, P.O. Box: 1993893973, phone/fax: +98821 6613927
  • Department of Organic Chemistry, Faculty of Chemistry, University of Alzahra, Tehran, Iran, P.O. Box: 1993893973, phone/fax: +98821 6613927
  • School of Chemistry, College of Science, University of Tehran, Iran
  • Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic, varma.rajender@epa.gov
Bibliografia
  • [1] Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I. Dietary copper and human health: Current evidence and unresolved issues. J Trace Element Med Biol. 2016;35:107-15. DOI: 10.1016/j.jtemb.2016.02.006.
  • [2] Sarban S, Isikan UE, Kocabey Y, Kocyigit A. Relationship between synovial fluid and plasma manganese, arginase, and nitric oxide in patients with rheumatoid arthritis. Biol Trace Element Res. 2007;115(2):97-106. DOI: 10.1007/BF02686022.
  • [3] Romero A, Ramos E, de Los Ríos C, Egea JJ, del Pino J, Reiter RJ. A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res. 2014;56(4):343-70. DOI: 10.1111/jpi.12132.
  • [4] Gu Q, Feng T, Cao H, Tang Y, Ge X, Luo J. HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation. Radiation Oncol. 2013;8(1):253. DOI: 10.1186/1748-717X-8-253.
  • [5] Raffi S, Mehrwan T, Bhatti M, Akhter J-I, Hameed A, Yawar W. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annal Microb. 2010;60(1):75-80. DOI: 10.1007/s13213-010-0015-6.
  • [6] Huff JD, Keung YK, Thakuri M, Beaty MW, Hurd DD, Owen J. Copper deficiency causes reversible myelodysplasia. Am J Hem. 2007;82(7):625-30. DOI: 10.1002/ajh.20864.
  • [7] Ozturk P, Kurutas E, Ataseven A, Dokur N, Gumusalan Y, Gorur A, et al. BMI and levels of zinc, copper in hair, serum and urine of Turkish male patients with androgenetic alopecia. J Trace Element Med Biol. 2014;28(3):266-70. DOI: 10.1016/j.jtemb.2014.03.003.
  • [8] Antonucci L, Porcu C, Iannucci G, Balsano C, Barbaro B. Non-alcoholic fatty liver disease and nutritional implications: Special focus on copper. Nutrients. 2017;9(10):1137. DOI: 10.3390/nu9101137.
  • [9] Cilliers KCJ, Muller F, Page BJ. Trace element concentration changes in brain tumors: A review. Anat Rec (Hoboken). 2020;303(5):1293-9. DOI: 10.1002/ar.24254.
  • [10] Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coordinat Chem Rev. 2017;353:1-57. DOI: 10.1016/j.ccr.2017.10.004 .
  • [11] Ismail Khan M, Khan MI, Khan SB, Khan AM, Akhtar K, Asiri AM. Green synthesis of plant supported CuAg and CuNi bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J Mol Liq. 2018;260:78-91. DOI: 10.1016/j.molliq.2018.03.058.
  • [12] Fardood ST, Ramazani A, Moradi S. Green synthesis of Ni-Cu-Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. J Sol-Gel Sci Technol. 2017;82:432-9. DOI: 10.1007/s10971-017-4310-6.
  • [13] Chen L, Noory Fajer A, Yessimbekov Z, Kazemi M, Mohammadi M. Diaryl sulfides synthesis: copper catalysts in C-S bond formation. J Sulfur Chem. 2019;40(4):451-68. DOI: 10.1080/17415993.2019.1596268.
  • [14] Gupta AK, De D, Katoch R, Garg A, Bharadwaj PK, Synthesis of a NbO type homochiral Cu(II) metal-organic framework: Ferroelectric behavior and heterogeneous catalysis of three-component coupling and Pechmann reactions. Inorg Chem. 2017;56(8):4697-705. DOI: 10.1021/acs.inorgchem.7b00342.
  • [15] An B, Zhang J, Cheng K, Ji P, Wang C, Lin W. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc. 2017;139:3834-40. DOI: 10.1021/jacs.7b00058.
  • [16] Dong X, Ren B, Sun Z, Li C, Zhang X, Kong M, Zheng S, Dionysiou DD. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Appl Catal B. Environ. 2019;253:206-17. DOI: 10.1016/j.apcatb.2019.04.052.
  • [17] Pachamuthu MP, Karthikeyan S, Maheswari R, Lee AF, Ramanathan A. Fenton-like degradation of bisphenol A catalyzed by mesoporous Cu/TUD-1. Appl Surface Sci. 2017;393:67-73. DOI: 10.1016/j.apsusc.2016.09.162.
  • [18] Liang Y, Chen Z, Yao W, Wang P, Yu S, Wang X. Decorating of Ag and CuO on Cu nanoparticles for enhanced high catalytic activity to the degradation of organic pollutants. Langmuir. 2017;33:7606-14. DOI: 10.1021/acs.langmuir.7b01540.
  • [19] Thangadurai D, David M, Dabire SS, Sangeetha J, Prakash L. Nanotechnology and the Sustainability: Toxicological Assessments and Environmental Risks of Nanomaterials Under Climate Change. In: Kharissova OV, Martínez LMT, Kharisov BI, editors. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Cham: Springer International Publishing; 2020. pp. 1-22. DOI: 10.1007/978-3-030-11155-7_91-1.
  • [20] Nasrollahzadeh M, Issaabadi Z, Sajadi SM. Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitro compounds. Separat Purificat Technol. 2018;197:253-60. DOI: 10.1016/j.seppur.2018.01.010.
  • [21] Ahmadi S, Rabiee N, Fatahi Y, Hooshmand SE, Bagherzadeh M, Rabiee M, et al. Green chemistry and coronavirus. Sustain Chem Pharm. 2021;21:100415. DOI: 10.1016/j.scp.2021.100415.
  • [22] Safajoo N, Mirjalili BBF, Bamoniri A. A facile and clean synthesis of indenopyrido [2, 3-d] pyrimidines in the presence of Fe3O4@ NCs/Cu (II) as bio-based magnetic nano-catalyst. Polycycl Aromat Compd. 2021;41:1241-8. DOI: 10.1080/10406638.2019.1666889.
  • [23] Dalvi BA, Lokhande PD. Copper (II) catalyzed aromatization of tetrahydrocarbazole: An unprecedented protocol and its utility towards the synthesis of carbazole alkaloids. Tetrahedron Lett. 2018;59:2145-2149. DOI: 10.1016/j.tetlet.2018.01.061.
  • [24] Kang W, Pei X, Rusinek CA, Bange A, Haynes EN, Heineman WR, Papautsky I. Determination of lead with a copper-based electrochemical sensor. Anal Chem. 2017;89:3345-52. DOI: 10.1021/acs.analchem.6b03894.
  • [25] Wei H, Pan D, Hu X, Liu M, Han H, Shen D. Voltammetric determination of copper in seawater at a glassy carbon disk electrode modified with Au@MnO2 core-shell microspheres. Microchimica Acta. 2018;185:258. DOI: 10.1007/s00604-018-2799-1.
  • [26] Li M, Huang X, Yu H. A colorimetric assay for ultrasensitive detection of copper(II) ions based on pH-dependent formation of heavily doped molybdenum oxide nanosheets. Mater Sci Engin C. 2019;101:614-18. DOI: 10.1016/j.msec.2019.04.022.
  • [27] Singh VK, Kushwaha CS, Shukla SK. Potentiometric detection of copper ion using chitin grafted polyaniline electrode. Int J Biol Macromol. 2020;147:250-257. DOI: 10.1016/j.ijbiomac.2019.12.209.
  • [28] Muhammad N, Zhang Y, Subhani Q, Intisar A, Mingli Y, Cui H, et al. Comparative steam distillation based digestion of complex inorganic copper concentrates samples followed by ion chromatographic determination of halogens. Microchem J. 2020;158:105176. DOI: 10.1016/j.microc.2020.105176.
  • [29] Wu L-L, Zhang Y, Zhao W, Li QM. Indirect determination of sodium cefotaxime with N‐propyl alcohol‐ammonium sulfate‐water system by extraction‐flotation of cuprous thiocyanate. J Chinese Chem Soc. 2008;55:550-6. DOI: 10.1002/jccs.200800081.
  • [30] Tanaka Y-k, Ogra Y. Evaluation of copper metabolism in neonatal rats by speciation analysis using liquid chromatography hyphenated to ICP mass spectrometry. Metallomics. 2019;11:1679-1686. DOI: 10.1039/c9mt00158a.
  • [31] Gao Q, Ji L, Wang Q, Yin K, Li J, Chen L. Colorimetric sensor for highly sensitive and selective detection of copper ion. Anal Methods. 2017;9:5094-100. DOI: 10.1039/C7AY01335C.
  • [32] He L, Z. Bao Z, Zhang K, Yang D, Sheng B, Huang R, et al. Ratiometric determination of copper(II) using dually emitting Mn (II)-doped ZnS quantum dots as a fluorescent probe. Microchim Acta. 2018;185:511. DOI: 10.1007/s00604-018-3043-8.
  • [33] Vojoudi H, Bastan B, Ghasemi JB, Badiei A. An ultrasensitive fluorescence sensor for determination of trace levels of copper in blood samples. Anal Bioanal Chem. 2019;411:5593-603. DOI: 10.1007/s00216-019-01940-w.
  • [34] Fu Y, Fan C, Liu G, Pu S. A colorimetric and fluorescent sensor for Cu2+ and F− based on a diarylethene with a 1,8-naphthalimide Schiff base unit. Sensor Actuat B. Chem. 2017;239:295-303. DOI: 10.1016/j.snb.2016.08.020.
  • [35] Jiao Y, Zhou L, He H, Yin J, Gao Q, Wei J, Duan C, Peng X. A novel rhodamine B-based off-on fluorescent sensor for selective recognition of copper (II) ions. Talanta. 2018;184:143-8. DOI: 10.1016/j.talanta.2018.01.073.
  • [36] Chen J, Chen H, Wang T, Li J, Wang J, Lu X. Copper ion fluorescent probe based on Zr-MOFs composite material. Anal Chem. 2019; 91:4331-6. DOI: 10.1021/acs.analchem.8b03924.
  • [37] Ottoni O, Cruz R, Alves R. Efficient and simple methods for the introduction of the sulfonyl, acyl and alkyl protecting groups on the nitrogen of indole and its derivatives. Tetrahedron. 1998;54:13915-28. DOI: 10.1016/S0040-4020(98)00865-5.
  • [38] Wan Y, Li Y, Yan C, Yan M, Tang Z. Indole: A privileged scaffold for the design of anti-cancer agents. Europ J Med Chem. 2019;183:111691. DOI: 10.1016/j.ejmech.2019.111691.
  • [39] Birmann PT, Sousa FS, de Oliveira DH, Domingues M, Vieira BM, Lenardão EJ, et al. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole, a new selenium compound elicits an antinociceptive and anti-inflammatory effect in mice. Europ J Pharm. 2018;827:71-9. DOI: 10.1016/j.ejphar.2018.03.005.
  • [40] Ciulla MG, Kumar K. The natural and synthetic indole weaponry against bacteria. Tetrahedron Lett. 2018;593:3223-33. DOI: 10.1016/j.tetlet.2018.07.045.
  • [41] Kaur J, Utreja D, Jain N, Sharma S. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives. Curr Org Synth. 2019;16:17-37. DOI: 10.2174/1570179415666181113144939.
  • [42] El‐Mekabaty A, Mesbah A, Fadda AA. An efficient and facile synthesis of functionalized indole‐3‐yl pyrazole derivatives starting from 3‐cyanoacetylindole. J Het Chem. 2017;54:916-22. DOI: 10.1002/jhet.2654 .
  • [43] Kumari A, Singh RK. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg Chem. 2017;89:103021. DOI: 10.1016/j.bioorg.2019.103021.
  • [44] Zheng K, Hong R. Stereoconfining macrocyclizations in the total synthesis of natural products. Nat Prod Rep. 2019;36:1546-75. DOI: 10.1039/C8NP00094H.
  • [45] Graebin GCS, Ribeiro FV, Rogério KR, Kümmerle AE. Multicomponent reactions for the synthesis of bioactive compounds: a review. Curr Org Synth. 2019;16:855-99. DOI: 10.2174/1570179416666190718153703.
  • [46] Ibarra IA, Islas-Jácome A, González-Zamora E. Synthesis of polyheterocycles via multicomponent reactions. Org Biomol Chem. 2018;16: 1402-18. DOI: 10.1039/C7OB02305G.
  • [47] Tan X, Liang Y, Ye Y, Liu Z, Meng J, Li F. Explainable Deep Learning-Assisted Fluorescence Discrimination for Aminoglycoside Antibiotic Identification. Anal Chem. 2022;94:829-36. DOI: 10.1021/acs.analchem.1c03508.
  • [48] Kakuchi R. The dawn of polymer chemistry based on multicomponent reactions. Polymer J. 2019;51:945-53. DOI: 10.1038/s41428-019-0209-0.
  • [49] Zhang Z, You Y, Hong C. Multicomponent reactions and multicomponent cascade reactions for the synthesis of sequence‐controlled polymers. Macromol Rapid Commun. 2018;39:1800362. DOI: 10.1002/marc.201800362.
  • [50] Kheilkordi Z, Mohammadi Ziarani G, Mohajer F, Badiei A, Varma RS. Waste-to-wealth transition: Application of natural waste materials as sustainable catalysts in multicomponent reactions. Green Chem. 2022;24:4304-27. DOI: 10.1039/D2GC00704E.
  • [51] Kaur G, Kumar R, Saroch S, Gupta VK, Banerjee B. Mandelic acid: an efficient organo-catalyst for the synthesis of 3-substituted-3-hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature. Curr Organocatal. 2021;8:147-59. DOI: 10.2174/2213337207999200713145440.
  • [52] Jamasbi N, Mohammadi Ziarani G, Mohajer F, Badiei A. A new Hg2+ colorimetric chemosensor: the synthesis of chromeno [d] pyrimidine-2, 5-dione/thione derivatives using Fe3O4@ SiO2@(BuSO3H)3. Res Chem Intermed. 2022;48:899-909. DOI: 10.1007/s11164-021-04611-7.
  • [53] Mohammadi Ziarani G, Khademi M, Mohajer F, Anafcheh M, Badiei A, Ghasemi JB. Solvent-free one-pot synthesis of 4-aryl-3, 5-dimethyl-1, 4, 7, 8-tetrahydrodipyrazolo [3, 4-b: 4′, 3′-e] pyridines using Fe3O4@SiO2@(BuSO3H)3 catalytic Fe3+ system as selective colorimetric. Res Chem Intermed. 2022;48:2111-33. DOI: 10.1007/s11164-022-04682-0.
  • [54] Mohammadi Ziarani G, Ebrahimi Z, Mohajer F, Badiei A. Synthesis and application of SBA-Pr-Py@Pd in Suzuki-type cross-coupling reaction. Res Chem Intermed. 2021;47:4583-94. DOI: 10.1007/s11164-021-04544-1.
  • [55] Mohajer F, Mohammadi Ziarani G, Badiei A. The synthesis of SBA-Pr-3AP@Pd and its application as a highly dynamic, eco-friendly heterogeneous catalyst for Suzuki-Miyaura cross-coupling reaction. Res Chem Intermed. 2020;46:4909-22. DOI: 10.1007/s11164-020-04218-4.
  • [56] Chen M-N, Mo L-P, Cui Z-S, Zhang Z-H. Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem. 2019;15:27-37. DOI: 10.1016/j.cogsc.2018.08.009.
  • [57] Verma C, Haque J, Quraishi M, Ebenso EE. Aqueous phase environmental friendly organic corrosion inhibitors derived from one step multicomponent reactions: a review. J Mol Liq. 2019;275:18-40. DOI: 10.1016/j.molliq.2018.11.040.
  • [58] Leonardi M, VillacampaM, Menéndez JC. Multicomponent mechanochemical synthesis. Chem Sci. 2018;9:2042-64. DOI: 10.1039/C7SC05370C.
  • [59] Neochoritis CG, Zhao T, Dömling A. Tetrazoles via multicomponent reactions. Chem Rev. 2019;119:1970-2042. DOI: 10.1021/acs.chemrev.8b00564.
  • [60] Chatel G. How sonochemistry contributes to green chemistry? Ultrason Sonochem. 2018;40:117-22. DOI: 10.1016/j.ultsonch.2017.03.029.
  • [61] Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science. 2020;367:397-400. DOI: 10.1126/science.aay3060.
  • [62] Sheldon RA. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain Chem Engin. 2018;6:32-48. DOI: 10.1021/acssuschemeng.7b03505.
  • [63] Shirmohammadli Y, Efhamisisi D, Pizzi A. Tannins as a sustainable raw material for green chemistry: A review. Indust Crop Product. 2018;126:316-32 .DOI: 10.1016/j.indcrop.2018.10.034.
  • [64] Antenucci A, Dughera S, Renzi P. Green chemistry meets asymmetric organocatalysis: a critical overview on catalysts synthesis. Chem Sust Chem. 2021;14:2785-853. DOI: 10.1002/cssc.202100573.
  • [65] Molnar M, Lončarić M, Kovač M. Green chemistry approaches to the synthesis of coumarin derivatives. Curr Org Chem. 2020;24:4-43. DOI: 10.2174/1385272824666200120144305.
  • [66] Feng GL. An efficient synthesis of 2,2-bis(1H-indol-3-yl)-2H-acenaphthen-1-one catalyzed by recyclable solid superacid SO42−/TiO2 under grinding condition. Chinese Chem Lett. 2010;21(9):1057-61. DOI: 10.1016/j.cclet.2010.05.009.
  • [67] Yu J, Shen T, Lin Y, Zhou Y, Song Q. Rapid and efficient synthesis of 3,3-Di(1H-indol-3-yl)indolin-2-ones and 2,2-Di(1H-indol-3-yl)-2H-acenaphthen-1-ones Catalyzed by p-TSA. Synth Commun. 2014;44:2029-36. DOI: 10.1080/00397911.2014.886330.
  • [68] Mohammadi Ziarani G, Hajiabbasi P, Badiei A. Application of SBA-Pr-NH2 as a nanoporous base silica catalyst in the development of 2,2-Bis(1H-indol-3-yl)acenaphthen-1(2H)-ones syntheses. J Iran Chem Soc. 2015;12:1649-54. DOI: 10.1007/s13738-015-0639-3.
  • [69] Feng G-L. Facile synthesis of 2,2-BIS(1H-indol-3-yl)acenaphthen-1(2H)-one derivatives catalysed by ceric ammonium nitrate. J Chem Res. 2015;34(4):203-5. DOI: 10.3184/030823410X12701382235942.
  • [70] Fernandez LS, Buchanan MS, Carroll AR, Feng YJ, Quinn RJ, Avery VM. Flinderoles a−c: Antimalarial bis-indole alkaloids from flindersia species. Org Lett. 2009;11:329-332. DOI: 10.1021/ol802506n.
  • [71] Zhou G, He L, Li KH, Pedroso CC, Gochin M. A targeted covalent small molecule inhibitor of HIV-1 fusion. Chem Commun. 2021;57:4528-31. DOI: 10.1039/D1CC01013A.
  • [72] Rohini R, Reddy PM, Shanker K, Hu A, Ravinder V. Antimicrobial study of newly synthesized 6-substituted indolo [1, 2-c] quinazolines. Europ J Med Chem. 2010;45:1200-5. DOI: 10.1016/j.ejmech.2009.11.038.
  • [73] Zhang F, Zhao K, Tang T, Deng Y, Zhang Y, Feng S, et al. Bisindole compound 4ae ameliorated cognitive impairment in rats with vascular dementia by anti-inflammation effect via microglia cells. Europ J Pharm. 2021;908:174357. DOI: 10.1016/j.ejphar.2021.174357.
  • [74] Khan NA, Kaur N, Owens P, Thomas OP, Boyd A. Bis-indole alkaloids isolated from the sponge Spongosorites calcicola disrupt cell membranes of MRSA. Int J Mol Sci. 2022:23:1991. DOI: 10.3390/ijms23041991.
  • [75] Jin T-Y, Li P-L, Wang C-L, Tang XL, Cheng M-M, Zong Y, et al. Racemic bisindole alkaloids: structure, bioactivity, and computational study. Chinese J Chem. 2021;39:2588-98. DOI: 10.1002/cjoc.202100255.
  • [76] Deb B, Debnath S, Chakraborty A, Majumdar S. Bis-indolylation of aldehydes and ketones using silica-supported FeCl3: molecular docking studies of bisindoles by targeting SARS-CoV-2 main protease binding sites. RSC Adv. 2021;11:30827-39. DOI: 10.1039/D1RA05679D.
  • [77] Bhattacharjee P, Chatterjee S, Achari A, Saha A, Nandi D, Acharya C, et al. A bis-indole/carbazole based C5-curcuminoid fluorescent probe with large Stokes shift for selective detection of biothiols and application to live cell imaging. Analyst. 2020;145:1184-9. DOI: 10.1039/C9AN02190F.
  • [78] Wang Z-G, Wang Y, Ding X-J, Sun Y-X, Liu H-B, Xie CZ, et al. A highly selective colorimetric and fluorescent probe for quantitative detection of Cu2+/Co2+: The unique ON-OFF-ON fluorimetric detection strategy and applications in living cells/zebrafish. Spectrochim Acta A. Mol Biomol Spect. 2020;228:117763. DOI: 10.1016/j.saa.2019.117763.
  • [79] Bhosale TR, Chandam DR, Anbhul PVe, Deshmukh MB. Synthesis of novel 4-((substituted bis-indolyl)methyl)-benzo-15-crown-5 for the colorimetric detection of Hg2+ ions in an aqueous medium. J Het Chem. 2019;56:477-84. DOI: 10.1002/jhet.3422.
  • [80] Kheilkordi Z, Mohammadi Ziarani G, Badeie A. Fe3O4@SiO2@(BuSO3H)3 synthesis as a new efficient nanocatalyst and its application in the synthesis of heterocyclic [3.3.3] propellane derivatives. Polyhedron. 2020;178:114343. DOI: 10.1016/j.poly.2019.114343.
  • [81] Renny JS, Tomasevich LL, Tallmadge EH, Collum DB. Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry. Angew Chem Int Edit. 2013;52:11998-12013. DOI: 10.1002/anie.201304157.
  • [82] Joshi B-P, Park J, Lee W-I, Lee K-H. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor. Talanta. 2009;78:903-9. DOI: 10.1016/j.talanta.2008.12.062.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-776d406b-079b-4810-94f4-b4f4cd1dd4b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.