Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | R. 19/81, nr 4 | 252--261
Tytuł artykułu

Zastosowanie spektroskopii w podczerwieni w badaniach nad syntezą thaumazytu w temperaturze pokojowej i w temperaturze 7°C

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Infrared investigation on systems related to the thaumasite formation at room temperature and 7°C
Języki publikacji
PL EN
Abstrakty
PL
Badano zmiany składu fazowego układu o składzie niezbędnym do powstawania thaumasytu w temperaturze pokojowej oraz w 7°C, w oparciu o spektroskopię w podczerwieni. Mieszaniny ciekłego krzemianu sodu [szkła wodnego], ettringitu lub gipsu i węglanu wapnia dojrzewały w wodzie przez 28 dni lub przez trzy miesiące. Śledzono wpływ Ca(OH)2 na przemiany mieszaniny zawierającej ettringit. Otrzymano thaumasyt w temperaturze pokojowej po 9 miesiącach przetrzymywania w roztworze cukrzanu wapnia, zawierającym krzemian sodu, węglan i siarczan wapnia. Otrzymano typowe widma krzemu w koordynacji oktaedrycznej tylko w obecności ettringitu, po 28 dniach przechowywania w temperaturze pokojowej. Wyniki wykazują, że wodorotlenek wapnia przyczynia się do powstawania wiązań wapnia z oktaedrami krzemo-tlenowymi w przypadku zwiększonej rozpuszczalności wapnia w niskiej temperaturze lub w roztworze sacharozy. Dojrzewanie w 7°C powoduje wyostrzenie widma w podczerwieni w zakresie liczby falowej ≤1100 cm-1, typowego dla pasma krzemianu.
EN
Pure systems with compositions needed for thaumasite formation at room temperature and 7°C were investigated by means of FTIR. Mixes of liquid sodium silicate, ettringite/or gypsum and calcium carbonate were stored in water for 28 days and 3 months. The effect of portlandite on the behavior of the ettringite-bearing mixture was investigated. Thaumasite was obtained at room temperature after 9 months storage of a lime sucrose solution with sodium silicate, carbonate and sulfate. Characteristic spectra of the octahedral silicon were detected only in presence of ettringite after 28 days storage at room temperature. The results indicate that the role of portlandite is to bond calcium with silicon octahedral at an increased solubility of lime at low temperature or in sucrose solution. Storage at 7°C lead to the sharpening of the infrared bands at wave numbers ≤1100 cm-1 where the silicate bands were detected.
Wydawca

Czasopismo
Rocznik
Strony
252--261
Opis fizyczny
Bibliogr. 51 poz., il.
Twórcy
  • Helwan University, Cairo, Egypt
  • Helwan University, Cairo, Egypt
autor
  • Cementir Holding S.p.A
autor
  • Helwan University, Cairo, Egypt
Bibliografia
  • 1. H.F.W., Taylor, Cement Chemistry. Academic Press New York 1977
  • 2. Crammond, N.J., Thausamine in failed cement mortars and renders from exposed brickwork, Cement and Concrete Research 15 (6), 1039, 1985.
  • 3. A.M., Hofmeister, J., Xu, S., Akimoto, Infrared spectroscopy of synthetic and natural stishovite. American Mineralogist. 75, 951-955, 1990.
  • 4. RIP, Lyon, Infrared confirmation of 6-fold co-ordination of silicon in stishovite. Nature, 196, 266-267, 1963.
  • 5. W., Sinclair, A.E., Ringwood, Single crystal analysis of stishovite, Nature 272, 714-715 1978.
  • 6. E.F. Irassar, Sulfate attack on cementious materials containg limestone filler – A review. Cement and Concrete Research 39, 241 – 254, 2009
  • 7. BRE Special Digest 1:2001 Concrete in aggressive ground, 2001.
  • 8. BRE Special Digest 1:2003 Concrete in aggressive ground, 2003.
  • 9. BRE Special Digest 1:2003 Concrete in aggressive ground, 2005.
  • 10. M.I., Sanchez de Rojas, R., Sotolongo, M., Frias, F. ,Marin, J., Rivera, E., Sabador, Decay of pavement mortar due to thaumasite formation. J. Chem. Technol. Biotechnol. 84, 320-325, 2009.
  • 11. S.A., Hartshorn, J.H., Sharp, R.N., Swamy, The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution. Cement Concrete Composites 25 (8), 351-359, 2003.
  • 12. T., Schmidt, B., Lothenbach, K., Scriviner, M., Romer, D., Rentsch, R., Figi, Conditions for thaumasite formation. 12th International Congress of Cement. Montreal Canada M4-03.2, 2007.
  • 13. S., Diamond, Thaumasite in Orange County, Southern California: an inquiry into the effect of low temperature. Cement Concrete Composite 25(80), 1161-1164, 2003.
  • 14. D.D., Higgins, N.J., Crammond, Resistance of concrete containing ggbs to the thaumasite form of sulfate attack. First International Conference on Thaumasite in Cementitious Materials, Garston, UK, 2002, CRC London.
  • 15. A., Borsoi, S., Collepardi, L., Coppola, R., Troli, M., Collepardi, Sulfate attack on blended Portland cement. V. M. Malhotra (Ed.), Fifth CANMET/ACI International Conference on Durability of Concrete. American Concrete Institute, Farmington Hill, USA, 417-432, 2000, ACI SP 192.
  • 16. J., Bensted, Thaumasite- background and nature in deterioration of cements, mortars and concretes. Cement and concrete composites 21, 117-121, 1999.
  • 17. Y.A. Osman, Studies on the chemical and thermal stability of the thaumasite salt and its expansion behavior. Ph.D. Thesis to be submitted in 2014. Helwan University Cairo Egypt.
  • 18. L.J., Struble, Synthesis and characterization of ettringite and related phases. Proc.8th Int. Cong. Chem. Cem. Rio de Janeiro, 6, 582-588, 1986.
  • 19. F.A., Miller, C.H. Wilkins, Infrared spectra and characteristics frequencies of inorganic ions. Analytical Chemistry, 24 (8), 1952.
  • 20. K.N., Nakamoto, Infrared and Raman spectra of inorganic and Coordination Compounds. Fourth Edition. John Wiley &Sons new York.1986.
  • 21. The surface chemistry of silica. John Willey & Sons 1979, Chapter 6, 634.1979.
  • 22. M.T., Blanco-Varela, J., Aguilera, L., Trusilewicz, S., Martinez-Ramirez, Thaumasite formation in hydrated and carbonated C3S pastes. 12th Intern. Congr. Chem. Cem. Canada, 2007. T4-06.3, 2007.
  • 23. Z., Jiang, Structural investigations of layered silicates by vibrational spectroscopy. M.Sc. Thesis, Laurentian University, Sudbury, Ontario, 1997.
  • 24. N., Lazarev, Vibrational spectra and structure of silicates. Consultants Bureau., New York, 1972.
  • 25. B., Notari, Adv. Catal. 41, 253-243, 1999.
  • 26. B., Tian, X., Liu., Ch., Yu, F., Gao, Q., Luo, S., Xie, B.,Tu, D., Zhao, Chem. Commun. 87, 1186-1191, 2002.
  • 27. E., Fois, A., Gamba, G., Tabacchi, S., Coluccia, J., Gand Martra, Phys. Chem. B107 9 10767-10772, 2003.
  • 28. Y.M.,Wang, Z.Y., Wu, J.H., Zhu, J. Solid State Chem. 177, 3815-3823, 2004.
  • 29. F., Boccuzzi, S., Coluccia, G., Ghiotti, C., Morterra, G., Venturello, J. Phys. Chem., 82, 1298, 1987.
  • 30. T., John, Jr., Yates, Water interactions with silica surfaces: A big role for surface structure. Surface Science, 565, 103-106, 2004.
  • 31. Ya, Davydov, A.V., Kiselev, L.T. Zhuravlev, Trans Faraday Soc., 60, 2254, 1964.
  • 32. H., Monke, Ein weiteres Mineral mit Silizium in 6er Koordination: Thaumasite. Naturwissenschaften 51, 239, 1964.
  • 33. H., Monke, Mineralspektren II. Tafel 6.164. Berlin: Akademie-Verlag, 1966
  • 34. C., Li, Y., Yao, L., Wang, Rapid quantitative identification of thaumasite. Materials science Forum.743-744, 186-192, 2013.
  • 35. S., Martinez-Ramirez, M.T., Blanco-Varela, J., Rapazote, Thaumasite formation in sugary solutions: Effect of temperature and sucrose concentration. Construction and Building Materials, 25, 21-29, 2011.
  • 36. M., Rospondek, A., Lewandowska, Comparative FT-IR spectral studies of thaumasite Ca3Si(OH)6(CO3)(SO4).12H2O,Mineralogical Society of Poland-Special papers. 20, 187-190, 2002.
  • 37. G. N., Kirov, C.N., Poulieff, On the infrared spectrum and thermal decomposition products of thaumasite, Ca3H2(CO3/SO4)SiO4.13 H2O. Mineralogical Magazine, 36, 1003-101, 1968.
  • 38. P., Pipilikaki, D., Papageorgiou, Ch., Teas, E., Chanitotakis, M., Kasioti, The effect of temperature on thaumasite formation. Cement and Concrete Composites. 30, 964-969, 2008.
  • 39. J.-M., Roland, B. Pellenqa, Akihiro Kushimac, Rouzbeh Shahsavarib, Krystyn J. Van Vlietd, Markus J. Buehlerb, Sidney Yipc,d, and Franz-Josef Ulmb, A realistic molecular model of cement hydrates. www.pnas.orgcgidoi10.1073pnas.0902180106
  • 40. L., Fernandez, C., Alonso, A., Hidalgo, C., Andrade, C., The role of magnesium during the hydration of C3S and CSH formation. Scanning electron microscopy and mid-infrared studies. Advances in Cement Research, 17 (1), 9-21, 2005.
  • 41. S.C.B., Myeni, S.J., Traina, G.A., Waychunas, T.J., Logan, Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite:. Geochimica et Cosmochimica Acta, 62 (21/22), 3499-3514, 1998.
  • 42. J., Aguilera, M.T., Blanco Varela, T., Vazquez, Procedure of synthesis of thaumasite. Cement and Concrete research, 31, 1163-1168, 2001.
  • 43. P., Pipilikaki, D., Papageorgiou, M., Dimitroula, E., Chanitotakis, M., Kasioti, Microstructure changes in mortars attacked by sulfates at 5°C. Construction and Building Materials, 23, 2259 - 2264, 2009.
  • 44. X.J., Gao, B.G., Ma, H.J., Ba, Influence of cement types and mineral admixtures on the resistance of mortar to thaumasite form of sulfate attack. 12th International Congress of Cement. Montreal Canada J4- 06.4, 2007.
  • 45. MacMillan Group Meeting. Ian Storer, Hypervalent silicon: Bonding, properties and synthetic utility, 2005.
  • 46. A, M, Nymark, Oxidation of silicon powder in humid air. Master Thesis. Chemical Engineering and Biotechnology. Norwegian University of Science and Technology. 2012.
  • 47. R. K., Iler, The chemistry of silica. Wiley-Interscience. 1979.
  • 48. S., Koeler, D., Heinz., L., Urbonas, Effect of ettringite on thaumasite formation. Cement and Concrete Research, 36, 697-706, 2006.
  • 49. E.M., Gartner, S.A., Jennings, Thermodynamics of calcium silicate hydrates and their solutions. J. Am. Ceram. Soc. 70, 743-749, 1987.
  • 50. F., Bellmann, J., Stark, The role of calcium hydroxide in the formation of thaumasite. Cement and Concrete Research. 38, 1154-1161, 2008.
  • 51. H., Nomura, M., Sekihiro, S., Yamashita, H., Inokawa, Investigation of thaumasite formation in mortar with limestone aggregate. 13th International Congress on the Chemistry of Cement. Madrid Spain 2011. Area 8, 432.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7763de59-9988-451a-a79f-8ab36ca14627
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.