Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Miniaturization of turbine jet engines not only enables testing of fuel mixtures but also opens up new possibilities for their use in smaller aircraft. In this work, measurements were carried out in the GTM 400 MOD engine in order to create the stand characteristics of unit thrust and specific fuel consumption. For both parameters, polynomials were determined describing their changes in the range of rotational speeds used. These calculations constitute the first stage of research on a hybrid turbojet engine powered by aviation kerosene and hydrogen. The reason for the research is to check the possibility of using hydrogen in turbomachinery engines. Hydrogen is one of the fuel additives approved for use by the European Union, which forces the aviation industry to reduce exhaust emissions into the atmosphere. Hydrogen can not only enrich aviation kerosene but also become an alternative fuel.
Słowa kluczowe
Rocznik
Tom
Strony
105--112
Opis fizyczny
Bibliogr. 14 poz., rys., wykr., zdj.
Twórcy
autor
- Zakład Inżynierii Lotniczej, Instytut Energetyki Cieplnej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska, ul. Piotrowo 5, 61-138 Poznań, lukasz.brodzik@put.poznan.pl
Bibliografia
- CAPOCCITTI S., KHARE A., MILDENBERGER U. 2010. Aviation Industry – Mitigating Climate Change Impacts through Technology and Policy. Journal of Technology Management & Innovation, 5(2): 66-75. https://doi.org/10.4067/S0718-27242010000200006
- CHACHURSKI R., TRZECIAK A., JĘDROWIAK B. 2018. Comparison of the Results of Mathematical Modeling of a GTM 120 Miniature Turbine Jet Engine with the Research Results. Combustion Engines, 173(2): 30-33. https://doi.org/10.19206/CE-2018-205
- DOUGLAS R., SAARLAS A. 1996. An Introduction to Aerospace Propulsion. Prentice Hall, Upper Saddle River, New Jersey.
- FLEUTI E. 2005. Aircraft Ground Handling Emissions at Zurich Airport. AERONET WorkShhop, Stockholm.
- GŁOWACKI P., SZCZECIŃSKI S. 2011. Turbinowy silnik odrzutowy jako źródło zagrożeń ekologicznych. Prace Instytutu Lotnictwa, 4(213): 252-257.
- KOTLARZ W. 2004. Turbinowe zespoły napędowe źródłem skażeń powietrza na lotniskach wojskowych. Air Forces Academy, Dęblin.
- KOTLARZ W., RYPULAK J., PIASECZNY L., ZADRĄG R. 2006. Testy toksyczności spalin turbinowego silnika lotniczego dla warunków startu i lądowania [Tests of exhaust gas toxicity of jet turbine engine for take off and landing phases of flight]. Combustion Engines, 127(4): 61-73.
- LEFEBRE A. 1998. Gas Turbine Combustion. Second Edition. Taylor & Francis, Philadelphia.
- MATTINGLY J.D. 1996. Elements of Gas Turbine Propulsion. McGraw-Hill, New York.
- RAMANATHAN V., FENG Y. 2009. Air Pollution, Greenhouse Gases and Climate Change: Global and Regional Perspectives. Atmospheric Environment, 43(1): 37-50. https://doi.org/10.1016/j.atmosenv.2008.09.063
- ROGERS G.F.C., STRAZNICKY P., COHEN H., SARAVANAMUTTOO H.I.H., NIX A. 2017. Gas Turbine Theory. 7th Edition. Pearson, London.
- ROTARU C. 2017. Analysis of Turbojet Combustion Chamber Performances Based on Flow Field Simplified Mathematical Model. AIP Conference Proceedings, 1836(1): 020047. https://doi.org/10.1063/1.4981987
- SANKAR B., GOUDA G., JANA S., IYENGAR V.S. 2020. Study of Design Modification Effects through Performance Analysis of a Legacy Gas Turbine Engine. Journal of Aerospace Technology and Management, 12: e0720. https://doi.org/10.5028/jatm.v12.1097
- SCHUMANN U. 2005. Formation, Properties and Climatic Effects of Contrails. Deutsches Zentrum fiir Luft- und Raumfahrt, Köln.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-771a5a8e-3fab-404a-8976-eacef7c91c5c