Warianty tytułu
Języki publikacji
Abstrakty
In this research, graphene oxide was introduced as an efficient flotation reagent for the selective separation of molybdenite from chalcopyrite. The performance of graphene oxide and its adsorption mechanism on chalcopyrite were investigated by flotation tests, FTIR spectra, and XPS measurements. First, graphene oxide was synthesised, and then its performance was evaluated by SEM, XRD, and EDX. Flotation tests were carried out in a hallimond flotation cell with a volume of 300 ml. Optimum flotation values were achieved at pH = 9 by adding 250 g/t of PAX (Potassium Amyl Xanthate) as a collector and 50 g/t of A65 (Poly Propylene Glycol) as a frother. The results showed high recovery, around 80% for molybdenite, while chalcopyrite was depressed in high amounts by employing 11 kg/t of graphene oxide as a depressant. Compared to common chalcopyrite depressants such as NaHS, Na2S, and C2H3NaO2S, graphene oxide had a higher potency in depressing, which can be applied as a green-depressant in the separation of molybdenite from chalcopyrite by the flotation process. Also, the validity of the depressing effect on chalcopyrite was verified by XPS and FTIR spectra.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
71--86
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- University of Tehran, Amirabad-Shomali, Kooye Daneshgah, 1915656535, Tehran, Iran
autor
- University of Tehran, Amirabad-Shomali, Kooye Daneshgah, 1915656535, Tehran, Iran, noparast@ut.ac.ir
- University of Tehran, Amirabad-Shomali, Kooye Daneshgah, 1915656535, Tehran, Iran
Bibliografia
- [1] S. Castro, A. Lopez-Valdivieso, J. Laskowski, Review of the flotation of Molybdenite. Part I: Surface properties and floatability. Int. J. Miner. Process. 148, 48-58 (2016). DOI: https://doi.org/10.1016/j.minpro.2016.01.003.
- [2] B. Yang, H. Yan, M. Zeng, P. Huang, F. Jia, A. Teng, A novel copper depressant for selective flotation of Chalcopyrite and Molybdenite. Miner. Eng. 151, 106309 (2020). DOI: https://doi.org/10.1016/j.mineng.2020.106309.
- [3] J.A. Peterson, M.S. Saran, J.S. Wisnouskas, Differential flotation reagent for molybdenum separation. ed: Google Patents, (1986).
- [4] J.-H. Chen, L.-H. Lan, X.-J. Liao, Depression effect of pseudo glycolythiourea acid in flotation separation of copper-molybdenum. T. Nonferr. Metal. Soc. 23 (3), 824-831 (2013). DOI: https://doi.org/10.1016/S1003-6326(13)62535-2.
- [5] Z. Yin, W. Sun, Y. Hu, C. Zhang, Q. Guan, R. Liu, P. Chen, M. Tian, Utilization of acetic acid-[(hydrazinylthioxomethyl) thio]-sodium as a novel selective depressant for Chalcopyrite in the flotation separation of Molybdenite. Sep. Purif. Technol. 179, 248-256 (2017). DOI: https://doi.org/10.1016/j.seppur.2017.01.049.
- [6] M.-Y. Li, D.-Z. Wei, Y.-B. Shen, W.-G. Liu, S.-L. Gao, G.-G. Liang, Selective depression effect in flotation separation of copper-molybdenum sulfides using 2, 3-disulfanylbutanedioic acid. T. Nonferr. Metal. Soc. 25 (9), 3126-3132 (2015). DOI: https://doi.org/10.1016/S1003-6326(15)63942-5.
- [7] Z. Yin, Y. Hu, W. Sun, C. Zhang, J. He, Z. Xu, J. Zou, C. Guan, C. Zhang, Q. Guan, Adsorption mechanism of 4-amino-5-mercapto-1, 2, 4-triazole as flotation reagent on Chalcopyrite. Langmuir. 34 (13), 4071-4083 (2018). DOI: https://doi.org/10.1021/acs.langmuir.7b03975.
- [8] G.P.W. Suyantara, T. Hirajima, H. Miki, K. Sasaki, M. Yamane, E. Takida, S. Kuroiwa, Y. Imaizumi, Effect of Fenton-like oxidation reagent on hydrophobicity and floatability of Chalcopyrite and Molybdenite. Colloid. Surface. A. 554, 34-48 (2018). DOI: https://doi.org/10.1016/j.colsurfa.2018.06.029.
- [9] M. Li, D. Wei, Q. Liu, W. Liu, J. Zheng, H. Sun, Flotation separation of copper–molybdenum sulfides using chitosan as a selective depressant. Miner. Eng. 83, 217-222 (2015). DOI: https://doi.org/10.1016/j.mineng.2015.09.013.
- [10] C. Guan, Z. Yin, S. Ahmed Khoso, W. Sun, Y. Hu, Performance analysis of thiocarbonohydrazide as a novel selective depressant for Chalcopyrite in molybdenite-chalcopyrite separation. Mineral-Basel. 8 (4), 142 (2018). DOI: https://doi.org/10.3390/min8040142.
- [11] Z. Yin, W. Sun, Y. Hu, C. Zhang, Q. Guan, C. Zhang, Separation of Molybdenite from Chalcopyrite in the Presence of Novel Depressant 4-Amino-3-thioxo-3, 4-dihydro-1, 2, 4-triazin-5 (2H)-one. Mineral-Basel. 7 (8), 146 (2018). DOI: https://doi.org/10.3390/min7080146.
- [12] Z.-G. Yin, S. Wei, Y.-H. Hu, Q.-J. Guan, C.-H. Zhang, Y.-S. Gao, J.-H. Zhai, Depressing behaviors and mechanism of disodium bis (carboxymethyl) trithiocarbonate on separation of Chalcopyrite and Molybdenite. T. Nonferr. Metal. Soc. 27 (4), 883-890 (2017). DOI: https://doi.org/10.1016/S1003-6326(17)60100-6.
- [13] X. Zhang, L. Lu, Y. Cao, J. Yang, W. Che, J. Liu, The flotation separation of Molybdenite from Chalcopyrite using a polymer depressant and insights to its adsorption mechanism. Chem. Eng. J. 395, 125137 (2020). DOI: https://doi.org/10.1016/j.cej.2020.125137.
- [14] X. Qiu, H. Yang, G. Chen, W. Luo, An alternative depressant of Chalcopyrite in Cu-Mo differential flotation and its interaction mechanism. Mineral-Basel. 9 (1), 1 (2018). DOI: https://doi.org/10.3390/min9010001.
- [15] P. Duda, R. Muzyka, Z. Robak, S. Kaptacz, Mechanical properties of graphene oxide-copper composites. Arch. Metall. Mater. 2, 863-868 (2016). DOI: http://dx.doi.org/10.1515/amm-2016-0146.
- [16] A. Baran, M. Śliwka, M. Lis, Selected Properties of Flotation Tailings Wastes Deposited in the Gilów and Żelazny Most Waste Reservoirs Regarding Their Potential Environmental Management/Wybrane Właściwości Odpadów Poflotacyjnych Zdeponowanych w Zbiornikach Gilów i Żelazny Most w Aspekcie Możliwości Ich Zagospodarowania Przyrodniczego. AMS, 3 (2013). DOI: http://dx.doi.org/10.2478/amsc-2013-0068.
- [17] G. Jozanikohan, M.N. Abarghooei, The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. J. Pet. Explor. Prod. Technol. 1-14, (2022). DOI: https://doi.org/10.1007/s13202-021-01449-y.
- [18] O. Sublemontier, C. Nicolas, D. Aureau, M. Patanen, H. Kintz, X. Liu, M.-A. Gaveau, J.-L. Le Garrec, E. Robert, F.-A. Barreda, X-ray photoelectron spectroscopy of isolated nanoparticles. J. Phys. Chem. Lett. 5 (19), 3399-3403 (2014). DOI: https://doi.org/10.1021/jz501532c.
- [19] X. Xu, D. Tang, J. Cai, B. Xi, Y. Zhang, L. Pi, X. Mao, Heterogeneous activation of peroxymonocarbonate by Chalcopyrite (CuFeS2) for efficient degradation of 2, 4-dichlorophenol in simulated groundwater. Appl. Catal. B-Environ. 251, 273-282 (2019). DOI: https://doi.org/10.1016/j.apcatb.2019.03.080.
- [20] A. Ghahremaninezhad, D. Dixon, E. Asselin, Electrochemical and XPS analysis of Chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochim. Acta. 87, 97-112 (2013). DOI: https://doi.org/10.1016/j.electacta.2012.07.119.
- [21] P. Velásquez, H. Gómez, J. Ramos-Barrado, D. Leinen, Voltammetry and XPS analysis of a chalcopyrite CuFeS2 electrode. Colloid. Surface. A. 140 (1-3), 369-375 (1998). DOI: https://doi.org/10.1016/S0927-7757(97)00293-8.
- [22] X. Zhang, L. Lu, H. Zeng, Z. Hu, Y. Zhu, L. Han, A macromolecular depressant for galena and its flotation behavior in the separation from Molybdenite. Miner. Eng. 157, 106576 (2020). DOI: https://doi.org/10.1016/j.mineng.2020.106576.
- [23] B. Yang, H. Yan, M. Zeng, H. Zhu, Tiopronin as a novel copper depressant for the selective flotation separation of Chalcopyrite and Molybdenite. Sep. Purif. Technol. 266, 118576 (2021). DOI: https://doi.org/10.1016/j.seppur.2021.118576.
- [24] R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M. Atieh, XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 45 (11), 14439-14448 (2019). DOI: https://doi.org/10.1016/j.ceramint.2019.04.165.
- [25] D. Boukhvalov, I. Zhidkov, A. Kukharenko, S. Cholakh, J.L. Menéndez, L. Fernández-García, E. Kurmaev, Interaction of graphene oxide with barium titanate in composite: XPS and DFT studies. J. Alloy. Compd. 840, 155747 (2020). DOI: https://doi.org/10.1016/j.jallcom.2020.155747.
- [26] X. Wang, P. Gao, J. Liu, X. Gu, Y. Han, Adsorption performance and mechanism of eco-friendly and efficient depressant galactomannan in flotation separation of Chalcopyrite and Molybdenite. J. Mol. Liq. 326, 115257 (2021). DOI: https://doi.org/10.1016/j.molliq.2020.115257.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-76cd22ae-89c9-4d1c-aafe-f9bd762061eb