Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes an efficient method of ECG signal denoising using the adaptive dual threshold filter (ADTF) and the discrete wavelet transform (DWT). The aim of this method is to bring together the advantages of these methods in order to improve the filtering of the ECG signal. The aim of the proposed method is to deal with the EMG noises, the power line interferences and the high frequency noises that could perturb the ECG signal. This algorithm is based on three steps of denoising, namely, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents certain applications of this algorithm on some of the MIT-BIH Arrhythmia database's signals. The results of these applications allow observing the high performance of the proposed method comparing to some other techniques recently published.
Czasopismo
Rocznik
Tom
Strony
499--508
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Laboratory of Systems Engineering and Information Technology (LiSTi), ENSA, Ibn Zohr University, Agadir, Morocco, wissamjenkal@gmail.com
autor
- Laboratory of Systems Engineering and Information Technology (LiSTi), ENSA, Ibn Zohr University, Agadir, Morocco
autor
- Laboratory of Systems Engineering and Information Technology (LiSTi), ENSA, Ibn Zohr University, Agadir, Morocco
autor
- Laboratory of Systems Engineering and Information Technology (LiSTi), ENSA, Ibn Zohr University, Agadir, Morocco
autor
- Laboratory of Systems Engineering and Information Technology (LiSTi), ENSA, Ibn Zohr University, Agadir, Morocco
autor
- Team of Child, Healt and Development, CHU, Faculty of Medicine, Cady Ayyad University, Marrakech, Morocco
Bibliografia
- [1] Fischbach M. Guide pratique du cardiaque. Elsevier Masson; 2002.
- [2] Venes D. Taber's cyclopedic medical dictionary. FA Davis; 2013. p. 1086–7.
- [3] Betts JG, DeSaix P, Johnson E, Johnson JE, Korol O, Kruse DH, et al. Anatomy and physiology. OpenStax College; 2013.
- [4] Jenkal W, Latif R, Toumanari A, Dliou A, El B'charri O, Maoulainine FMR. QRS detection based on an advanced multilevel algorithm. Int J Adv Comput Sci Appl 2016;7 (1):253–60.
- [5] Kabir MA, Shahnaz C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed Signal Process Control 2012;7(5):481–9.
- [6] Ghariani N, Chaoui M, Lahiani M, Ghariani H. Design of ECG transmitter for wireless biomedical systems. Int Rev Model Simul 2015;8(3):301–6.
- [7] Cao X, Li Z. Denoising of ECG signal based on a comprehensive framework. International Conference on Multimedia Technology (ICMT). 2010. pp. 1–4.
- [8] Sameni R, Shamsollahi MB, Jutten C, Clifford GD. A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans Biomed Eng 2007;54(12):2172–85.
- [9] Kumari R, Bharathi S, Sadasivam V. Design of optimal discrete wavelet for ECG signal using orthogonal filter bank. International Conference on Computational Intelligence and Multimedia Applications. IEEE; 2007. p. 525–9.
- [10] Kirst M, Glauner B, Ottenbacher J. Using DWT for ECG motion artifact reduction with noise-correlating signals. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2011. pp. 4804–7.
- [11] Poungponsri S, Yu XH. An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks. Neurocomputing 2013;117:206–13.
- [12] Nassiri B, Latif R, Toumanari A, Elouaham S, Maoulainine FMR. ECG signal de-noising and compression using discrete wavelet transform and empirical mode decomposition techniques. Int J Numer Anal Methods Eng 2013;1(5):245–52.
- [13] Lu Y, Yan J, Yam Y. Model-based ECG denoising using empirical mode decomposition. International Conference on Bioinformatics and Biomedicine (BIBM'09). IEEE; 2009. p. 191–6.
- [14] Elouaham S, Latif R, Dliou A, Laaboubi M, Maoulainine FMR. Biomedical signals analysis using the empirical mode decomposition and parametric and non parametric time-frequency techniques. Int J Inf Technol 2013;1(1):1–10.
- [15] Gonzalez-Lopez A, Morales-Sanchez J, Larrey-Ruiz J, Bastida-Jumilla MC, Verdú-Monedero R. Performance improvement in noise reduction by means of wavelet processing. Phys Med 2016;32(1):226–31.
- [16] Lahmiri S. Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthc Technol Lett 2014;1 (3):104–9.
- [17] Singh O, Sunkaria RK. Powerline interference reduction in ECG signals using empirical wavelet transform and adaptive filtering. J Med Eng Technol 2015;39(1):60–8.
- [18] Tang G, Qin A. ECG de-noising based on empirical mode decomposition. The 9th International Conference for Young Computer Scientists (ICYCS). 2008. pp. 903–6.
- [19] Nanavati SP, Panigrahi PK. Wavelets: applications to image compression-I. Resonance 2005;1(2):52–61.
- [20] Banerjee S, Gupta R, Mitra M. Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measurement 2012;45(3):474–87.
- [21] Jenkal W, Latif R, Toumanari A, Dliou A, El B'charri O. An efficient method of ECG signals denoising based on an adaptive algorithm using mean filter and an adaptive dual threshold filter. Int Rev Comput Softw 2015;10(11).
- [22] Gupta V, Chaurasia V, Shandilya M. Random-valued impulse noise removal using adaptive dual threshold median filter. J Vis Commun Image Represent 2015;26:296–304.
- [23] He K, Sun J, Tang X. Guided image filtering. IEEE Trans Pattern Anal Mach Intell 2013;35(6):1397–409.
- [24] Zhao D, Yang L, Wu X, Wang N, Li H. An improved Roberts edge detection algorithm based on mean filter and wavelet denoising. Advances in information technology and industry applications. Springer Berlin- Heidelberg; 2012. p. 299–305.
- [25] Wang J, Ye Y, Pan X, Gao X. Parallel-type fractional zero-phase filtering for ECG signal denoising. Biomed Signal Process Control 2015;18:36–41.
- [26] Wang J, Ye Y, Pan X, Gao X, Zhuang C. Fractional zero-phase filtering based on the Riemann–Liouville integral. Signal Process 2014;98:150–7.
- [27] Awal MA, Mostafa SS, Ahmad M, Rashid MA. An adaptive level dependent wavelet thresholding for ECG denoising. Biocybern Biomed Eng 2014;34(4):238–49.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-764491b4-d24f-42a7-a7f5-a77321ae1b00