Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Tom 26 | 1--17
Tytuł artykułu

Selected Agricultural Analyses Based on Data from MultiSen-PL, the Multi-sensor Airborne Remote Sensing Station

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The RE band of electromagnetic radiation has recently become the subject of interest in remote sensing due to its greater penetration into the plant structure than the commonly used NIR band. It is particularly important in cultivating corn, which is characterised by considerable thick foliage during the growth period. While sensors equipped with this channel are used in satellite remote sensing and onboard drones, they are not implemented in airborne imaging systems. An airborne remote sensing station was constructed, including, in addition to the traditional R, G, B and NIR image components, also the RE channel and a laser scanner (ALS). Data processing involves geometric calibration and the creation of a multi-channel orthophoto map. The data processed in this way was tested by analysing several series of aerial recordings of a corn field, which involved developing interpretation keys based on selected vegetation indices and assigning individual groups of pixels with five plant health classes. This study focused on the comparative assessment of the effects of using the NDVI, GNDVI, NDRE and SAVI indices, comparing their results to yield measurements (CHM) and the results of field measurements of plants at the end of the growing season. Promising results with a high degree of correlation were obtained.
Wydawca

Rocznik
Tom
Strony
1--17
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • GISPRO SA, Szczecin, Poland
  • GISPRO SA, Szczecin, Poland
  • GISPRO SA, Szczecin, Poland
  • Faculty of Civil and Environmental Engineering and Architecture Bydgoszcz University of Science and Technology, Poland
  • GISPRO SA, Szczecin, Poland
Bibliografia
  • Aiazzi, B., Alparone, L., Arienzo, A., Garzelli, A., Lolli, S. (2019). Fast multispectral pansharpening based on a hyper-ellipsoidal color space, Proc. SPIE 11155, Image and Signal Processing for Remote Sensing XXV. 1115507. https://doi.org/10.1117/12.2533481
  • Alonzo, M., Andersen, H.-E., Morton, D., Cook, B. (2018). Quantifying Boreal Forest Structure and Composition Using UAV Structure from Motion. Forests. 9(3), 119. https://doi.org/10.3390/f9030119
  • Bannari, A., Mohamed, A.M.A., El-Battay, A. (2017). Water stress detection as an indicator of red palm weevil attack using WorldView-3 data. In: Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), FortWorth, TX, USA, July 23 2017, 4000-4003. https://doi.org/10.1109/IGARSS.2018.8518687
  • Bogue, R. (2017). Sensors key to advances in precision agriculture. Sensor Review. 37(1), 1-6. https://doi.org/10.1108/SR-10-2016-0215
  • Camilli, A., Cugnasca, C.E., Saraiva, A.M., Hirakawa, A.R., Corrêa, P.L.P. (2007). From wireless sensors to field mapping: Anatomy of an application for precision agriculture. Computers and Electronics in Agriculture. 58(1), 25-36. https://doi.org/10.1016/j.compag.2007.01.019
  • Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., Gattelli, M. (2015). Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sensing 7, 4026-4047. https://doi.org/10.3390/rs70404026
  • Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., et al. (2015). Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7-27. https://doi.org/10.1016/j.isprsjprs.2014.09.002
  • Danoedoro, P., Gupita, D.D. (2022). Combining Pan-Sharpening and Forest Cover Density Transformation Methods for Vegetation Mapping using Landsat-8 Satellite Imagery. International Journal on Advanced Science Engineering and Information Technology, 12, 881-891. https://doi.org/10.18517/ijaseit.12.3.12514.
  • De Petris, S., Sarvia, F., Borgogno-Mondino, E. (2023). Uncertainty assessment of Sentinel-2-retrieved vegetation spectral indices over Europe. European journal of remote sensing, 1-14. https://doi.org/10.1080/22797254.2023.2267169
  • Diedrichs, A.L., Tabacchi, G., Grunwaldt, G., Pecchia, M., Mercado, G., Antivilo, F.G. (2014). Low-Power Wireless Sensor Network for Frost Monitoring. In: Agriculture Research. IEEE Biennial Congress of Argentina, 11-13 June 2014. https://doi.org/10.1109/ARGENCON.2014.6868546
  • Di Stefano, F., Chiappini, S., Gorreja, A., Balestra, M., Pierdicca R. (2021). Mobile 3D scan LiDAR: a literature review. Geomatics, Natural Hazards and Risk. 12(1). https://doi.org/10.1080/19475705.2021.1964617
  • Dong, T., Liu, J., Shang, J., Qian, B., Ma, B., Kovacs, J.M., Walters, D., Jiao, X., Geng, X., Shi, Y. (2019). Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 222, 133-143. https://doi.org/10.1016/j.rse.2018.12.032
  • ESA. Sentinel-2 Missions-Sentinel Online, ESA: Paris, France, 2014. Pobrano z https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2 (1.11.2023)
  • Fawcett, D., Panigada, C., Tagliabue, G., Boschetti, M., Celesti, M., Evdokimov, A., Biriukova, K., Colombo, R., Miglietta, F., Rascher, U., et al. (2020). Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions. Remote Sensing, 12, 514. https://doi.org/10.3390/rs12030514
  • Fernández-Manso, A., Fernández-Manso, O., Quintano, C. (2016). SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. International Journal of Applied Earth Observation and Geoinformation, 50, 170-175. https://doi.org/10.1016/j.jag.2016.03.005
  • Fernández-Quintanilla, C., Peña, J.M., Andújar, D., Dorado, J., Ribeiro, A., López-Granados, F. (2018). Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Research, 58, 259-272. https://doi.org/10.1111/wre.12307
  • Fisher, D.K., Kebede, H. (2010). A low-cost microcontroller-based system to monitor crop temperature and water status. Computers and Electronics in Agriculture, 74(1), 168-173. https://doi.org/10.1016/j.compag.2010.07.006
  • Fletcher R.S. Comparing Pan-Sharpening Algorithms to Access an Agriculture Area: A Mississippi Case Study. (2023). Agricultural Sciences, 14(9), 1206-1221. https://doi.org/10.4236/as.2023.149081
  • Gaughan, A.E., Kolarik, N.E., Stevens, F.R., Pricope, N.G., Cassidy, L., Salerno, J., Bailey, K.M., Drake, M., Woodward, K., Hartter, J. (2022). Using Very-High-Resolution Multispectral Classification to Estimate Savanna Fractional Vegetation Components. Remote Sensing, 14, 551. https://doi.org/10.3390/rs14030551
  • Giersch, S., Guernaoui, O.E., Raasch, S., Sauer, M., Palomar, M. (2022). Atmospheric flow simulation strategies to assess turbulent wind conditions for safe drone operations in urban environments. Journal of Wind Engineering and Industrial Aerodynamics, 229, 105136. https://doi.org/10.1016/j.jweia.2022.105136
  • Goetz, S.J. (1997). Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing. 18(1), 71-94. https://doi.org/10.1080/014311697219286
  • Guo, Q., Ehlers, M., Wang, Q., Pohl, Ch., Hornberg, S., Li, A. (2017). Ehlers pan-sharpening performance enhancement using HCS transform for n-band data sets. International Journal of Remote Sensing, 38(17), 4974-5002. https://doi.org/10.1080/01431161.2017.1320448
  • Koma, Z., Zlinszky, A., Bekő, L., Burai, P., Seijmonsbergen, A.C., Kissling, W.D. (2021). Quantifying 3D vegetation structure in wetlands using differently measured airborne laser scanning data. Ecological Indicators, 127, 107752. https://doi.org/10.1016/j.ecolind.2021.107752
  • Kumar, D., Ambika, R. (2020). Drone integrated weather sensors for agriculture purpose. Int. Journal of Electrical Engineering and Technology (IJEET), 11(5), 83-90. https://doi.org/10.34218/IJEET.11.5.2020.009
  • Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., Liu, Y., Liu, B., Ustin, S.L., Chen, X. (2014). Improving estimation of summer maise nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157, 111-123. https://doi.org/10.1016/j.fcr. 2013.12.018
  • Lundby, T., Christiansen, M.P., Jensen K. (2019). Towards a weather analysis software framework to improve UAS operational safety. 2019 International Conference on Unmanned Aircraft Systems, ICUAS, IEEE, Atlanta, GA, United States. 1372-1380. https://doi.org/10.1109/ICUAS.2019.8798271
  • Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L.R. (2015). Advanced methods of plant disease detection. A Review Agronomy for Sustainable Development, 35(1), 1-25. https://doi.org/10.1007/s13593-014-0246-1
  • Misra, G., Cawkwell, F., Wingler, A. (2020). Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sensing, 12(17), 2760. https://doi.org/10.3390/rs12172760
  • Mogili, UM R., Deepak, B.B.V.L. (2018). Review on Application of Drone Systems in Precision Agriculture. Procedia Computer Science, 133, 502-509. https://doi.org/10.1016/j.procs.2018.07.063
  • Mulla, D.J. (2013). Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng., 114, 358-371. https://doi.org/10.1016/j.biosystemseng.2012.08.009
  • Padwick, C., Deskevich, M., Pacifici, F., Smallwood, S. (2010). WorldView-2 pan-sharpening. In Proceedings of the ASPRS 2010 Annual Conference, San Diego, CA, USA, April 27, 2010, 1-14.
  • Prashar, A., Jones, H.G. (2016). Assessing drought responses using thermal infrared imaging. In: Environmental Responses in Plants, Humana Press: New York, NY, USA. 209-219. https://doi.org/10.1007/978-1-4939-3356-3_17
  • Radočaj, D., Jurišić, M., Gašparović, M. (2022). The Role of Remote Sensing Data and Methods in a Modern Approach to Fertilisation in Precision Agriculture. Remote Sensing, 14, 778. https://doi.org/10.3390/rs14030778
  • Rajawat, M., Gautam, S. (2021). Weather conditions and its effects on UAS. Int. Research Journal of Modernization in Engineering Technology and Science, 12, 255-261. Retrieved from: https://www.irjmets.com/uploadedfiles/paper/volume_3/issue_12 (1.11.2023)
  • Rose, D.C., and Chilvers, J. (2018). Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst., 2, 87. https://doi.org/10.3389/fsufs.2018.00087
  • Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III Final Report, Greenbelt, Md, 1974, 371. Retrieved from: https://ntrs.nasa.gov/api/citations/19740022555 (1.11.2023)
  • Rowlands, A., Sarris A. (2007). Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. Journal of Archaeological Science, 34(5), 795-803. https://doi.org/10.1016/j.jas.2006.06.018
  • Sankey, T., Donager, J., McVay, J., Sankey, J.B. (2017). UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sens. Environ., 195, 30-43. https://doi.org/10.1016/j.rse.2017.04.007
  • Sieczkiewicz, M., Jedynak, Ł, Wyczałek, I., Strzeliński, P., Wyczałek-Jagiełło, M. Wielosensorowy lotniczy system teledetekcyjny MultiSen-1PL na potrzeby precyzyjnego rolnictwa i leśnictwa. (2024). Multi-sensor airborne remote sensing system MultiSen-1PL for precision agriculture and forestry. Przegląd Geodezyjny. (in Polish) <in the review>
  • Spadoni, G.L., Cavalli, A., Congedo, L., Munafò, M. (2020). Analysis of Normalised Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography. Remote Sensing Applications: Society and Environment, 20, 100419. https://doi.org/10.1016/j.rsase.2020.100419
  • Sun, Y., Ren, H., Zhang, T., Zhang, C., Qin, Q. (2018). Crop leaf area index retrieval based on inverted difference vegetation index and NDVI. IEEE Geosci. Remote. 15(11), 1662-1666. https://doi.org/10.1109/LGRS.2018.2856765
  • Tayari, E., Jamshid, A.R., Goodarzi, H.R. (2015). Role of GPS and GIS in precision agriculture. Journal of Scientific Research and Development, 2(3), 157-162. Retrieved from: www.jsrad.org (1.11.2023)
  • Tian-en C., Li-ping C., Yunbin G., Yanji, W. (2009). Spatial Decision Support System for Precision Farming Based on GIS Web Service, 2009 International Forum on Information Technology and Applications, Chengdu, China, 372-376, https://doi.org/10.1109/IFITA.2009.550
  • Triantafyllou, A., Sarigiannidis, P., Bibi, S. (2019). Precision Agriculture: A Remote Sensing Monitoring System Architecture. Information, 10, 348. https://doi.org/10.3390/info10110348
  • Tsouros, D.C., Bibi, S., Sarigiannidis, P.G. (2019). A Review on UAV-Based Applications for Precision Agriculture. Information, 10, 349. https://doi.org/10.3390/info10110349
  • Turner, D., Lucieer, A., Watson, C. (2012). An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing (Basel), 4, 1392-1410. https://doi.org/10.3390/rs4051392
  • Vogels, M.F.A., de Jong, S.M., Sterk, G., Addink, E.A. (2017). Agricultural cropland mapping using black-and-white aerial photography, Object-Based Image Analysis and Random Forests. International Journal of Applied Earth Observation and Geoinformation, 54, 114-123. https://doi.org/10.1016/j.jag.2016.09.003
  • Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402
  • Xie, Q., Dash, J., Huang,W., Peng, D., Qin, Q., Mortimer, H., Casa, R., Pignatti, S., Laneve, G., Pascucci, S., et al. (2018). Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 1482-1493. https://doi.org/10.1109/JSTARS.2018.2813281
  • Xue, J., Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 1-17. https://doi.org/10.1155/ 2017/1353691
  • Yang, D., Meng, R., Morrison, B.D., McMahon, A., Hantson, W., Hayes, D.J., Breen, A.L., Salmon, V.G., Serbin, S.P. (2020). A Multi-Sensor Unoccupied Aerial System Improves Characterisation of Vegetation Composition and Canopy Properties in the Arctic Tundra. Remote Sens., 12, 2638. https://doi.org/10.3390/rs12162638
  • Yao, H., Qin, R., Chen, X. (2019). Unmanned Aerial Vehicle for Remote Sensing Applications – A Review. Remote Sensing (Basel). 11(12), 1443. https://doi.org/10.3390/rs11121443
  • Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A.J. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 117, 322-337. https://doi.org/10.1016/j.rse.2011.10.007
  • Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C., Huete, A. (2002) Monitoring vegetation phenology using MODIS. Remote Sensing of Environ., 84(3), 471-475. https://doi.org/10.1016/S0034-4257(02)00135-9
  • Zhu, Y., Liu, J., Tao, X., Su, X., Li, W., Zha, H., Wu, W., Li, X. (2023). A Three-Dimensional Conceptual Model for Estimating the Above-Ground Biomass of Winter Wheat Using Digital and Multispectral Unmanned Aerial Vehicle Images at Various Growth Stages. Remote Sens., 15, 3332. https://doi.org/10.3390/rs15133332
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-75e29fdd-316a-488b-9369-48a4f80fe1d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.