Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 12 | 138--143
Tytuł artykułu

Stability robustness and accuracy improvement of double PI based DC drive system subjected to load torque changes

Treść / Zawartość
Warianty tytułu
PL
Poprawa stabilności, wytrzymałości i dokładności układu napędowego prądu stałego opartego na podwójnym PI, poddanego zmianom momentu obrotowego obciążenia
Języki publikacji
EN
Abstrakty
EN
In this research paper, we intend to study the issue of improving the stability robustness and accuracy performance of double Proportional-Integral and reduced order state estimator based speed controlled DC drive system when subjected to sudden change of load torque disturbance, where an optimized transfer function based feedforward compensating technique is proposed and applied for this purpose. The simulation results have shown a significant improvement of systems’ accuracy performance and stability robustness to variable load torque.
PL
W tym artykule badawczym zamierzamy zbadać kwestię poprawy stabilności, wytrzymałości i dokładności systemów napędowych DC sterowanych prędkością w oparciu o podwójną proporcjonalność-całkę i estymator stanu zredukowanego, gdy są poddawane nagłej zmianie zakłócenia momentu obrotowego obciążenia, gdzie zoptymalizowana funkcja przenoszenia W tym celu zaproponowano i zastosowano technikę kompensacji opartą na wyprzedzaniu. Wyniki symulacji wykazały znaczną poprawę dokładności i odporności systemów na zmienny moment obciążenia.
Wydawca

Rocznik
Strony
138--143
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Schleicher M., Blasinger F., Control Engineering, a Guide for Beginners, 3rd ed., Jumo GmbH and Co, Fulda, Germany, (2003).
  • [2] Ender D.B., Process control performance, not as good as you think, Control Engineering, (1993).
  • [3] Astrom K.J., Hagglund T., PID Controllers: Theory, Design and Tuning, 2nd ed., Instrument Society of America, USA, (1995).
  • [4] Perić N., Branica I., Petrović I., Modification and application of auto-tuning PID controller, Proceedings of the 8th IEEE Mediterranean Conference on Control and Automation, MED 2000, Rio Patras, GREECE, (2000), 17-19.
  • [5] Astrom K.J., Hagglund T., The future of PID control, Control Engineering Practice (Elsevier), 9 (2001), 1163–1175.
  • [6] Ang K.H., Chong G.C.Y., Li Y., PID control system, analysis, design, and technology, IEEE Trans. on Control Systems Technology, 13 (2005), No. 4, 559-576.
  • [7] Jaisimha M., Narasimha S.V., Design and implementation of PID controller using genetic algorithm, Int. Journal of Eng. Res. & Tech. (IJERT), 7 (2018), 104-107.
  • [8] Santhiya S.R., Femi S.V., Shyla Mol S.S., Suresh V., Optimized PID controller for low power applications using particle swarm optimization, Int. Journal of Eng. Res. & Tech. (IJERT), 8 (2019), 8–11.
  • [9] Souza D.A., Batista J.G., dos Reis L.L.N. et al., PID controller with novel PSO applied to a joint of a robotic manipulator, J Braz. Soc. Mech. Sci. Eng., 43 (2021), No. 8, https://doi.org/10.1007/s40430-021-03092-4
  • [10] Muniraj R., Iruthayarajan M.W., Arun R.V., Sivakumar T.S., Parameter optimization of multi objective robust proportional integral derivative controller with filter using multi objective evolutionary algorithms, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg, 64 (2019), No. 3, 259–265.
  • [11] El Tohamy I.A., Adel A., El Koshairy D., Enhancement of the dynamic performance of a DC motor using fuzzy logic algorithm, Int. Journal of Eng. Res. & Tech. (IJERT), 8 (2019), No. 10, 324 –330.
  • [12] Chimezirim O.A., Lazarus O.U., Olubiwe M., Okozi S.O., Design of Fuzzi-PID tracking controller for industrial conveyor system, Int. Journal of Eng. Res. & Tech. (IJERT), 8 (2019), No. 3, 263–270.
  • [13] Yakhelef Y., Boulouh M., Performance improvement of minimax optimized PI controller based DC drive system with actuator saturation, Mechatronic Systems and Control, 42 (2014), No. 4.
  • [14] Wasim M., Ullah M., Iqbal J., Gain-Scheduled Proportional Integral Derivative Control of Taxi Model of Unmanned Aerial Vehicles, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 64 (2019), No. 1, 75–80.
  • [15] Yakhelef Y., Boulouh M., Mendaci S., Comparative analysis of single and double PI speed controlled DC drive performance improvement using minimax approach, In Proceedings of the 4th International Conference of Electrical Engineering, ICEE’15, Boumerdes, Algeria, (2015).
  • [16] Akimov L.V., Dolbnia V.T., Kolotilo V.I., Electric DC Drive Control Systems with State Observers, Kharkov State Polytechnic University, KHSPU, Ukraine, (1998).
  • [17] D’Azzo J.J., Houpis CH., Sheldon S.N., Linear Control System Analysis and Design with MATLAB, Fifth Edition, Revised and Expanded, Marcel Dekker, Inc., New York, (2003).
  • [18] Chen Q., Reset Control Systems: Stability, Performance and Application, a Ph.D. Dissertation, University of Massachusetts Amherst, (2000).
  • [19] Koshkouei A.J., Burnham K.J., Control of DC Motors using Proportional Integral Sliding Mode, Control Theory and Applications Centre, Coventry University, Coventry CV1 5FB, UK, (2008).
  • [20] Zaihidee F.M., Mekhilef S., Mubin M., Robust speed control of PMSM using sliding mode control (SMC): A review, Energies, (2019), 1-27.
  • [21] Dai K., Zhu Z., Tang Y. et al., Position synchronization tracking of multi-axis drive system using hierarchical sliding mode control, J. Braz. Soc. Mech. Sci. Eng. 43 (2021), No. 4, https://doi.org/10.1007/s40430-021-02906-9
  • [22] Lu Y.S., Chen C.T., Chiu C.W., Design and implementation of a sliding-mode disturbance observer for robotic manipulators with unbalanced rotating payloads, J. Braz. Soc. Mech. Sci. Eng., 44 (2022), No. 1, https://doi.org/10.1007/s40430-021-03342-5
  • [23] Schmid C., Adaptive sliding-mode control of nonlinear systems using neural network approach, In Proceedings of the 17th International Conference on Process Control, Strbske Pleso, Slovakia, (2009), 346–352.
  • [24] Stepanenko Y., Caos Y., Su C.Y., Variable structure control of robotic manipulator with PID sliding surfaces, Int. Journal of Robust and Nonlinear Control, 8 (1998), 79–90.
  • [25] Reigstad T.I., Uhlen K., Optimized control of variable speed hydropower for provision of fast frequency reserves, Electr. Power Syst. Res., 189 (2020), 1–7.
  • [26] Zerikat M., Chekroun S., Adaptation learning speed control for high-performance induction motor using neural networks, Int. Journal of Signal, System Control and Engineering Application, 2 (2009), No. 1, 15–21.
  • [27] Krishna K.B.M., Goud B.V.S., Speed control of DC motor through position and speed tracking system using neural networks, Int. Journal of Electronic Eng. Res., 5 (2013), No. 1, 87–103.
  • [28] Lei M., Dapeng L., Adaptive neural networks control using barrier Lyapunov functions for DC Motor system with time-varying state constraints, Hindawi Complexity, (2018), 1-9.
  • [29] Gökbulut M., Dandil B., Bal C., A hybrid neuro-fuzzy controller for brushless DC motors, Springer, (2006), 125 – 132.
  • [30] Yakhelef Y., Boulouh M., Nafa F., Smaani B., Steady state performance improvement of state observer based drive systems under load variation conditions, Energy, series: Modern problems of power engineering and ways of solving Them, 2 (2021), No. 98, 54-59.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-75d5f2f5-07db-44e8-bfd0-b21a26fd5b11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.