Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the scientific results of a study assessing agroclimatic resources in agricultural landscapes located in various natural zones of the Turkestan region of the RK (Republic of Kazakhstan). The research methods included classical and modern methods of mathematical statistics using digital technology and time series graphs to develop a mathematical model for climatic and hydrological indicators. Assessment of changes in indicators of agroclimatic resources in agricultural landscapes for 1941-2020 showed that the sum of air temperature, evaporation from the water surface and radiation balance of the daytime surface, characterising the energy resources of landscapes, increased by 10-15%, which contributes to increase in the total water consumption of agricultural land by 10-12%. Meanwhile, the decreasing tendency of the amount of precipitation by 5-10% in all natural climatic zones of the region has become one of the factors leading to a decrease in the natural moisture supply of the soil and vegetation cover of landscapes by 10-15%, acting as important environment-forming and ecological functions. The combined impact of these environment-forming factors has become the key reason for the increase in the deficit of agricultural land water consumption by 15-20%, the reduction of solar energy costs for the soil-forming process by 10-15% and the increase of the climate aridisation, and has become a signal for the need in the safety of agricultural activities, requiring the development of a set of adaptive measures to mitigate this process in the region.
Czasopismo
Rocznik
Tom
Strony
76--87
Opis fizyczny
Bibliogr. 50 poz., mapy, tab., wykr.
Twórcy
autor
- Al-Farabi Kazakh National University, Department of Geography and Environmental Sciences, 71 al-Farabi Ave, 050040, Almaty, Kazakhstan, tuletayev.ab@gmail.com
autor
- JSC “Institute of Geography and Water Security”, Department of Landscape Study and Problems of Nature Management, 99 Pushkin St, 050010, Almaty, Kazakhstan, z-mustafa@rambler.ru
autor
- JSC “Institute of Geography and Water Security”, Department of Landscape Study and Problems of Nature Management, 99 Pushkin St, 050010, Almaty, Kazakhstan, skorintseva@mail.ru
autor
- JSC “Institute of Geography and Water Security”, Department of Landscape Study and Problems of Nature Management, 99 Pushkin St, 050010, Almaty, Kazakhstan, tbassova@mail.ru
autor
- JSC “Institute of Geography and Water Security”, Department of Landscape Study and Problems of Nature Management, 99 Pushkin St, 050010, Almaty, Kazakhstan, omaraidos@inbox.ru
Bibliografia
- Ahamed, T.N., Rao, K.G. and Murthy, J.S.R. (2000) “GIS-based fuzzy membership model for crop-land suitability analysis,” Agricultural systems, 63(2) pp. 75–95. Available at: https://doi.org/10.1016/S0308-521X(99)00036-0.
- Bolliger, J. and Kienast, F. (2010) “Landscape functions in a changing environment,” Landscape Online, 21, pp. 1–5. Available at: https://doi.org/10.3097/LO.201021.
- Budyko, M.I. (1956) Teplovoy balans zemnoy poverkhnosti [Thermal balance of the earth’s surface]. Leningrad: Gidrometeorologicheskoye izdatel’stvo.
- Casale, F. and Bocchiola, D. (2022) “Climate change effects upon pasture in the Alps: The case of Valtellina Valley, Italy,” Climate, 10(11), 173. Available at: https://doi.org/10.3390/cli10110173.
- Daily, G.C. et al. (2009) “Ecosystem services in decision making: Time to deliver,” Frontiers in Ecology and the Environment, 7(1), pp. 21–28. Available at: https://doi.org/10.1890/080025.
- De Martonne, E. (1926) Une nouvelle fonction climatologique: L'indice d'aridité [A new climatological function: The aridity index]. Paris: Gauthier-Villars.
- Fan, L.J. et al. (2023) “Assessment of total and extreme precipitation over central Asia via statistical downscaling: Added value and multi-model ensemble projection,” Advances in Climate Change Research, 14(1), pp. 62–76. Available at: https://doi.org/10.1016/j.accre.2023.01.004.
- FAO (2013) Climate-smart agriculture: Sourcebook. Rome: Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/3/a-i3325e.pdf (Accessed: July 18, 2024).
- FAO (no date) Climate-smart agriculture. Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/climate-smart-agriculture/en/ (Accessed: July 18, 2024).
- Fischer, G. et al. (2002) Global agro-ecological assessment for agriculture in the 21st century: Methodology and results. Laxenburg: IIASA. Available at: https://pure.iiasa.ac.at/id/eprint/6667/1/RR-02-002.pdf (Accessed: July 17, 2024).
- Fischer, G. et al. (2005) “Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080,” Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), pp. 2067–2083. Available at: https://doi.org/10.1098/rstb.2005.1744.
- Fischer, G. et al. (2006) Agro-ecological zones assessments. Laxenburg: IIASA. Available at: https://pure.iiasa.ac.at/id/eprint/8099/1/RP-06-003.pdf (Accessed: July 17, 2024).
- Fischer, G. and Heilig, G.K. (1997) “Population momentum and the demand on land and water resources,” Philosophical Transactions of the Royal Society B: Biological Sciences, 352(1356), pp. 869–889. Available at: https://doi.org/10.1098/rstb.1997.0067.
- Garajeh, M.K. et al. (2023) “An integrated approach of remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security,” Scientific Reports, 13(1), 24. Available at: https://doi.org/10.1038/s41598-023-28244-5.
- Ivanov, N.N. (1941) “Zony uvlazhneniya zemnogo shara [Humidification zones of the globe],” Izvestiya Academy of Sciences of the USSR, Geography and geophysics series, 3, pp. 261–288.
- Jones, M. (2007) “The European landscape convention and the question of public participation,” Justice, Power and the Political Landscape, 32(5), pp. 613–633. Available at: https://doi.org/10.1080/01426390701552753.
- Kafatos, M.C. et al. (2017) “Responses of agroecosystems to climate change: Specifics of resilience in the mid-latitude region,” Sustainability, 9(8), 1361. Available at: https://doi.org/10.3390/su9081361.
- Kazgidromet (2022) Annual bulletin of monitoring the status and climate change in Kazakhstan. The national hydrometeorological service of the Republic of Kazakhstan. Available at: https://www.kazhydromet.kz/en/klimat/ezhegodnyy-byulleten-monitoringa-sostoyaniya-i-izmeneniya-klimata-kazahstana (Accessed: July 18, 2024).
- Kovshov, V.P. and Nosonov, A.M. (2005) Teoriya i metodologiya issledovaniya prirodnogo agropotentsiala territorii [Theory and methodology of the study of the natural agro-potential of the territory]. Saransk: Referent.
- Kulshreshtha, S.N. (2011) “Climate change, prairie agriculture, and prairie economy: The new normal,” Canadian Journal of Agricultural Economics, 59(1), pp. 19–44. Available at: https://doi.org/10.1111/j.1744-7976.2010.01211.x.
- Laterra, P., Orúe, M.E. and Booman, G.C. (2012) “Spatial complexity and ecosystem services in rural landscapes,” Agriculture, Ecosystems & Environment, 154, pp. 56–67. Available at: https://doi.org/10.1016/j.agee.2011.05.013.
- Lee, T. et al. (2023) “Development of irrigation schedule and management model for sustaining optimal crop production under agricultural drought,” Paddy and Water Environment, 21(1), pp. 31–45. Available at: https://doi.org/10.1007/s10333-022-00911-9.
- Li, Y. et al. (2023) “Source apportionment and source-specific risk evaluation of potential toxic elements in oasis agricultural soils of Tarim River Basin,” Scientific Reports, 13(1), 2980. Available at: https://doi.org/10.1038/s41598-023-29911-3.
- Lipper, L. et al. (2014) “Climate-smart agriculture for food security,” Nature climate change, 4(12), pp. 1068–1072. Available at: https://doi.org/10.1038/nclimate2437.
- Mezentsev, V.S. and Karnatsevich, I.V. (1969) Uvlazhnennost’ Zapadno-Sibirskoy ravniny [Humidity of the West Siberian Plain]. Leningrad: Gidrometeorologicheskoye izdatel’stvo.
- Moeletsi, M.E. and Walker, S. (2012) “A simple agroclimatic index to delineate suitable growing areas for rainfed maize production in the Free State Province of South Africa,” Agricultural and Forest Meteorology, 162, pp. 63–70. Available at: https://doi.org/10.1016/j.agrformet.2012.04.009.
- Mustafa, A.A. et al. (2011) “Land suitability analysis for different crops: a multi criteria decision making approach using remote sensing and GIS,” Researcher, 3(12), pp. 61–84.
- Mustafayev, Zh. et al. (2023) “Assessment of climate change in natural areas of the Turkestan region of the republic of Kazakhstan for the purposes of sustainable agricultural and recreational nature management,” GeoJournal of Tourism and Geosites, 46(1), pp. 70–77. Available at: https://doi.org/10.30892/gtg.46108-1002.
- Mustafayev, Zh. and Ryabtsev, A. (2012) Adaptivno-landshaftnyye melioratsii zemel’ v Kazakhstane [Adaptive-landscape land reclamation in Kazakhstan]. Taraz: BIG NEO-SERVICE.
- Mustafayev, Zh.S., Tursynbaev, N.A. and Kireycheva, L.V. (2022) Obosnovanie jekosistemnyh uslug pri obustrojstve rechnyh bassejnov (na primere reki Talas) [Justification of ecosystem services in the development of river basins (on the example of the Talas River)]. Chisinau: Lap Lambert Academic Publishing.
- Nikolsky, Yu.N. and Shabanov, V.V. (1986) “Raschet proyektnoy urozhaynosti v zavisimosti ot vodnogo rezhima melioriruyemykh zemel' [Calculation of the design yield depending on the water regime of reclaimed lands],” Gidrotekhnika i melioratsiya, 9, pp. 52–56.
- Olaniyi, A.O. et al. (2015) “Agricultural land use suitability assessment in Malaysia,” Bulgarian Journal of Agricultural Science, 21(3), pp. 576–588.
- Osborne, B.B. et al. (2022) “The consequences of climate change for dryland biogeochemistry,” New Phytologist, 236(1), pp. 15–20. Available at: https://doi.org/10.1111/nph.18312.
- Ostrom, E. (2009) “A general framework for analyzing sustainability of social–ecological systems,” Science, 325(5339), pp. 419–422. Available at: https://doi.org/10.1126/science.1172133.
- Pegov, S.A. and Khomyakov, P.M. (1991) Modelirovaniye razvitiya ekologicheskikh sistem [Modeling the development of ecological systems]. Leningrad: Gidrometeorologicheskoye izdatel’stvo.
- Spravochno-informatsionnyy portal “Pogoda i klimat” (no date) Pogoda i klimat [Weather and climate]. Available at: http://www.pogodaiklimat.ru/ (Accessed: July 18, 2024).
- Rahman, M.M. et al. (2022) “Analysis of climate change impacts on the food system security of Saudi Arabia,” Sustainability, 14(21), 14482. Available at: https://doi.org/10.3390/su142114482.
- Rychko, O.K. (1996) Teoreticheskie i metodologicheskie osnovy ocenki agroklimaticheskih resursov sel'skohozjajstvennyh landshaftov v aridnyh regionah [Theoretical and methodological bases for assessing the agroclimatic resources of agricultural landscapes in arid regions]. Abstract of PhD Thesis. Institut vodnykh problem Rossiyskoy akademii nauk.
- Selyaninov, G.T. (1958) “Printsipy agroklimaticheskogo rayonirovaniya SSSR [Principles of agroclimatic zoning of the USSR],” in F.F. Davitaya and A.I. Shulgin (eds.) Voprosy agroklimaticheskogo rayonirovaniya SSSR [Issues of agroclimatic zoning of the USSR]. Moscow: Ministerstvo zemledeliya SSSR, pp. 18–26.
- Shashko, D.I. (1985) “Uchityvat’ bioklimaticheskiy potentsial [Consider bioclimatic potential],” Zemledelie, 4, pp. 19–26.
- Shashko, D.I. and Dyuzheva, T.S. (1969) Agroklimaticheskoe rajonirovanie SSSR [Agroclimatic zoning of the USSR]. Moscow: Glavnoe upravlenie geodezii i kartografii pri Sovete Ministrov SSSR.
- Steiner, J.L. and Hatfield, J.L. (2008) “Winds of change: A century of agroclimate research,” Agronomy Journal, 100(3), pp. 132–152. Available at: https://doi.org/10.2134/agronj2006.0372c.
- Sukhanov, P.A. (2013) Scientific basis for assessing and managing the agro-resource potential of the region (on the example of the Leningrad Region). PhD Thesis. Agrofizicheskiy nauchno-issledovatel’skiy institut.
- Tekeste, K. (2021) “Climate-Smart Agricultural (CSA) practices and its implications to food security in Siyadebrina Wayu District, Ethiopia,” African Journal of Agricultural Research, 17(1), pp. 92–103. Available at: https://doi.org/10.5897/AJAR2020.15100.
- Vinogradov, B.V. (1997) “Razvitiye kontseptsii opustynivaniya [Development of the concept of desertification],” Izvestiya RAN, Seriya Geograficheskaya, 5, pp. 94–105.
- Volobuev, V.R. (1974) Vvedeniye v energetiku pochvoobrazovaniya [Introduction to the energetics of soil formation]. Moscow: Nauka.
- Wen, L. et al. (2023) “Study on soil erosion and its driving factors from the perspective of landscape in Xiushui watershed, China,” Scientific Reports, 13(1), 8182. Available at: https://doi.org/10.1038/s41598-023-35451-7.
- WMO (no date) World Meteorological Organization. Available at: https://public.wmo.int/en (Accessed: July 18, 2024).
- Zhai, F. and Zhuang, J. (2009) “Agricultural impact of climate change: A general equilibrium analysis with special reference to Southeast Asia,” ADBI Working Paper Series, 131. Available at: https://www.adb.org/sites/default/files/publication/155986/adbi-wp131.pdf (Accessed: July 18, 2024).
- Zhukov, V.A. (1998) Modelirovaniye, otsenka i ratsional'noye ispol'zovaniye agroklimaticheskikh resursov Rossii [Modeling, assessment and rational use of agroclimatic resources in Russia]. Abstract of PhD Thesis. Vserossiyskiy nauchno-issledovatel'skiy institut sel'skokhozyaystvennoy meteorologii.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7598d9a9-fe80-4320-bff1-38acad7f925d