Warianty tytułu
Języki publikacji
Abstrakty
The article presents a mini-review of key factors significantly affecting the electrical properties of nanofluids. One-step and two-step approaches, together with examples of vacuum sputtering-based techniques, chemical reduction, and mechanical mixing techniques, were explained. The crucial factors enhancing the electric and dielectric responses, such as nanofiller concentration, its type, geometry, uniformity of distribution in the base liquid as well as the base liquid’s type, temperature, chemical stability, etc., were analyzed. Special attention was paid to the impact of the parameters on electrical conductivity, permittivity, and dielectric losses. The selected models for nanofluid’s conductivity prediction have been presented. The potential and implemented applications of nanofluids in the energy-related industry branches with reference to their electrical properties have been reviewed. Examples of applications in power transformers, solar cell production processes, nanoelectrofuel flow batteries, and other electrotechnologies have been analyzed.
Czasopismo
Rocznik
Tom
Strony
1137--1160
Opis fizyczny
Bibliogr. 66 poz., rys., tab., wykr., wz.
Twórcy
autor
- Lublin University of Technology, Department of Electrical Engineering and Superconductivity Technologies, 38A Nadbystrzycka St., 20-618 Lublin, Poland, o.boiko@pollub.pl
- Lublin University of Technology, Department of Electrical Engineering and Superconductivity Technologies, 38A Nadbystrzycka St., 20-618 Lublin, Poland, h.stryczewska@pollub.pl
- Lublin University of Technology, Department of Electrical Engineering and Superconductivity Technologies, 38A Nadbystrzycka St., 20-618 Lublin, Poland, g.komarzyniec@pollub.pl
autor
- Environment and Energy Laboratory, 25-39 Suizenji-Park, 862-0956 Kumamoto, Japan, ebihara@environment-lab.com
autor
- Sojo University, Faculty of Computer and Information Sciences, 4-22-1 Ikeda, 860-0082 Kumamoto, Japan
autor
- University of the Ryukyus, Department of Electrical and Electronics Engineering,1 Senbaru, Nishihara, 903-0213 Okinawa, Japan, yamazato@eee.u-ryukyu.ac.jp
autor
- Kremenchuk Mykhailo Ostrohradskyi National University, Department of Systems of Automatic Control and Electric Drives, 20 Pershotravneva St., 39600 Kremenchuk, Ukraine, mzagirn@gmail.com
Bibliografia
- [1] Sarojini K.G.K., Manoj S.V., Singh P.K., Pradeep T., Das S.K., Electrical conductivity of ceramic and metallic nanofluids, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 417, pp. 39–46 (2013), DOI: 10.1016/j.colsurfa.2012.10.010.
- [2] Fal J., Sobczak J., Stagraczynski R., Estelle P., Zyla G., Electrical conductivity of titanium dioxide ethylene glycol-based nanofluids: Impact of nanoparticles phase and concentration, Power Technology, vol. 404, 117423 (2022), DOI: 10.1016/j.powtec.2022.117423.
- [3] Du B., Shi Y., Liu Q., Fabrication of Fe3O4@SiO2 Nanofluids with High Breakdown Voltage and Low Dielectric Loss, Coatings, vol. 9, no. 11, 716 (2019), https://www.mdpi.com/2079-6412/9/11/716.
- [4] Koutras K.N., Tegopoulos S.N., Charalampakos V.P., Kyritsis A., Gonos I.F., Pyrgioti E.C., Breakdown Performance and Partial Discharge Development in Transformer Oil-Based Metal Carbide Nanofluids, Nanomaterials, vol. 12, no. 2, 269 (2022), https://www.mdpi.com/2079-4991/12/2/269.
- [5] Kumar L.H., Kazi S.N., Masjuki H.H., Zubir M.N.M., Jahan A., Bhinitha C., Energy, exergy and economic analysis of liquid flat-plate solar collector using green covalent functionalized graphene nanoplatelets, Applied Thermal Engineering, vol. 192, 116916 (2021), DOI: 10.1016/j.applthermaleng.2021.116916.
- [6] Stryczewska H.D., Boiko O., Stepien M.A., Lasek P., Yamazato M., Higa A., Selected Materials and Technologies for Electrical Energy Sector, Energies, vol. 16, no. 12, 4543 (2023), DOI: 10.3390/en16124543.
- [7] Siricharoenpanich A., Wiriyasart S., Srichat A., Naphon P., Thermal cooling system with Ag/Fe3O4 nanofluids mixture as coolant for electronic devices cooling, Case Studies in Thermal Engineering, vol. 20, 100641 (2020), DOI: 10.1016/j.csite.2020.100641.
- [8] Cruz R.C., Reinshagen J., Oberacker R., Segadães A.M., Hoffmann M.J., Electrical conductivity and stability of concentrated aqueous alumina suspensions, Journal of Colloid and Interface Science, vol. 286, no. 2, pp. 579–588 (2005), DOI: 10.1016/j.jcis.2005.02.025.
- [9] Chakraborty B., Raj K.Y., Pradhan A.K., Chatterjee B., Chakravorti S., Dalai S., Investigation of Dielectric Properties of TiO2 and Al2O3 nanofluids by Frequency Domain Spectroscopy at Different Temperatures, Journal of Molecular Liquids, vol. 330, 115642 (2021), DOI: 10.1016/j.molliq.2021.115642.
- [10] Cieslinski J.T., Ronewicz K., Smolen S., Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids, Archives of Thermodynamics, vol. 36, no. 4, pp. 35–47 (2015), DOI: 10.1515/aoter-2015-0031.
- [11] Sadri R., Hosseini M., Kazi S.N., Bagheri S., Ahmed S.M., Ahmadi G., Zubir N., Sayuti M., Dahari M., Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer, Energy Conversion and Management, vol. 150, pp. 26–36 (2017), DOI: 10.1016/j.enconman.2017.07.036.
- [12] Farade R.A., Wahab N.I.A., Mansour D.E.A., Azis N.B., Jasni J.B.T., Veerasamy V., Thirumeni M., Irudayaraj A.X.R., Murthy A.S., Investigation of the Effect of Sonication Time on Dispersion Stability, Dielectric Properties, and Heat Transfer of Graphene Based Green Nanofluids, IEEE Access, vol. 9, pp. 50607–50623 (2021), DOI: 10.1109/ACCESS.2021.3069282.
- [13] Shirazi S.F.S., Gharehkhani S., Yarmand H., Badarudin A., Metselaar H.S.C., Kazi S.N., Nitrogen doped activated carbon/graphene with high nitrogen level: Green synthesis and thermo-electrical properties of its nanofluid, Materials Research, vol. 152, pp. 192–195 (2015), DOI: 10.1016/j.matlet.2015.03.110.
- [14] Zhang C., Gao L., Zhou X., Wu X., Stability and Photothermal Properties of Fe3O4 − H2O Magnetic Nanofluids, Nanomaterials, vol. 13, 1962 (2023), DOI: 10.3390/nano13131962.
- [15] Leong K.Y., Razali I., Ahmad K.Z.K., Ong H.C., Ghazali M.J., Rahman M.R.A., Thermal conductivity of an ethylene glycol/water-based nanofluid with copper-titanium dioxide nanoparticles: An experimental approach, International Communications in Heat and Mass Transfer, vol. 90, pp. 23–28 (2018), DOI:10.1016/j.icheatmasstransfer.2017.10.005.
- [16] Ranjbarzadeh R., Moradikazerouni A., Bakhtiari R., Asadi A., Afrand M., An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles, Journal of Cleaner Production, vol. 206, pp. 1089–1100 (2019), DOI: 10.1016/j.jclepro.2018.09.205.
- [17] Islam R., Shabani B., Prediction of electrical conductivity of TiO2 water and ethylene glycol-based nanofluids for cooling application in low temperature pem fuel cells, Energy Procedia, vol. 160, pp. 550–557 (2019), DOI: 10.1016/j.egypro.2019.02.205.
- [18] Giwa S.O., Sharifpur M., Meyer J.P., Experimental investigation into heat transfer performance of water-based magnetic hybrid nanofluids in a rectangular cavity exposed to magnetic excitation, International Communications in Heat and Mass Transfer, vol. 116, 104698 (2020), DOI: 10.1016/j.icheatmasstransfer.2020.104698.
- [19] Akilu S., Baheta A.T., Sharma K.V., Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions, Journal of Molecular Liquids, vol. 246, pp. 396–405 (2017), DOI: 10.1016/j.molliq.2017.09.017.
- [20] Taheri A.A., Abdali A., Taghilou M., Alhelou H.H., Mazlumi K., Investigation of Mineral Oil-Based Nanofluids Effect on Oil Temperature Reduction and Loading Capacity Increment of Distribution Transformers, Energy Reports, vol. 7, pp. 4325–4334 (2021), DOI: 10.1016/j.egyr.2021.07.018.
- [21] Gao T., Li C.H., Zhang Y.B., Yang M., Jia D.Z., Jin T., Hou Y.L., Li R.Z., Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants, Tribology International, vol. 131, pp. 51–63 (2019), DOI: 10.1016/j.triboint.2018.10.025.
- [22] Farade R.A., Wahab N.I.A., Mansour D.E.A., Azis N.B., Jasni J.B., Veerasamy V., Vinayagam A., Kotiyal B.M., Khan T.M.Y., The Effect of Interfacial Zone Due to Nanoparticle-Surfactant Interaction on Dielectric Properties of Vegetable Oil Based Nanofluids, IEEE Access, vol. 9, pp. 107033–107045 (2021), DOI: 10.1109/ACCESS.2021.3098758.
- [23] Du B., Li J., Wang F., Yao W., Yao S., Influence of Monodisperse Fe3O4 Nanoparticle Size on Electrical Properties of Vegetable Oil-Based Nanofluids, Journal of Nanomaterials, vol. 2015, 560352 (2015), DOI: 10.1155/2015/560352.
- [24] Koutras K.N., Naxakis I.A., Antonelou A.E., Charalampakos V.P., Pyrgioti E.C., Yannopoulos S.N., Dielectric strength and stability of natural ester oil based TiO2 nanofluids, Journal of Molecular Liquids, vol. 316, 113901 (2020), DOI: 10.1016/j.molliq.2020.113901.
- [25] Hussain M.R., Khan Q., Khan A.A., Refaat S.S., Abu-Rub H., Dielectric Performance of Magneto Nanofluids for Advancing Oil-Immersed Power Transformer, vol. 8, pp. 163316–163328 (2020), DOI: 10.1109/ACCESS.2020.3021003.
- [26] Farade R.A., Wahab N.I.A., Mansour D.E.A., Azis N.B., Jasni J.B., Veerasamy V., Vinayagam A., Kotiyal B.M., Khan T.M.Y., The Effect of Interfacial Zone Due to Nanoparticle-Surfactant Interaction on Dielectric Properties of Vegetable Oil Based Nanofluids, IEEE Access, vol. 9, pp. 107033–107045 (2021), DOI: 10.1109/ACCESS.2021.3098758.
- [27] Thomas P., Hudedmani N.E., Prasath R.T.A.R., Roy N.K., Mahato S.N., Synthetic Ester Oil Based High Permittivity CaCu3Ti4O12 (CCTO) Nanofluids an Alternative Insulating Medium for Power Transformer, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 26, no. 1, pp. 314−321 (2019), DOI: 10.1109/TDEI.2018.007728.
- [28] Sima W.X., Shi J., Yang Q., Huang S.S., Cao X.F., Effects of Conductivity and Permittivity of Nanoparticle on Transformer Oil Insulation Performance: Experiment and Theory, vol. 22, no. 1, pp. 380–390 (2015), DOI: 10.1109/TDEI.2014.004277.
- [29] Farade R.A., Wahab N.I.A., Mansour D.E.A., Junaidi N., Soudagar M.E.M., Rajamony R.K., AlZubaidi A., A review on ultrasonic alchemy of oil-based nanofluids for cutting-edge dielectric and heat transfer oils, Journal of Molecular Liquids, vol. 408, 125312 (2024), DOI: 10.1016/j.molliq.2024.125312.
- [30] Zaaroura I., Harmand S., Carlier J., Toubal M., Fasquelle A., Nongaillard B., Thermal performance of self-rewetting gold nanofluids: Application to two-phase heat transfer devices, International Journal of Heat and Mass Transfer, vol. 174, 121322 (2021), DOI: 10.1016/j.ijheatmasstransfer.2021.121322.
- [31] Gómez-Merino A.I., Jiménez-Galea J.J., Rubio-Hernández F.J., Arjona-Escudero J.L., Santos-Ráez I.M., Heat Transfer and Rheological Behavior of Fumed Silica Nanofluids, Processes, vol. 8, 1535 (2020), DOI: 10.3390/pr8121535.
- [32] Omiddezyani S., Gharehkhani S., Yousefi-Asli V., Khazaee I., Ashjaee M., Nayebi R., Shemirani F., Houshfar E., Experimental investigation on thermo-physical properties and heat transfer characteristics of green synthesized highly stable CoFe2O4/rGO nanofluid, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 610, 125923 (2021), DOI: 10.1016/j.colsurfa.2020.125923.
- [33] Sone B.T., Diallo A., Fuku X.G., Gurib-Fakim A., Maaza M., Biosynthesized CuO nano-platelets: Physical properties & enhanced thermal conductivity nanofluidics, Arabian Journal of Chemistry, vol. 13, no. 1, pp. 160–170 (2020), DOI: 10.1016/j.arabjc.2017.03.004.
- [34] Kumar R., Sharma J., Sood J., Rayleigh-Bénard cell formation of green synthesized nano-particles of silver and selenium, Materials Today: Proceedings, vol. 28, pp. 1781–1787 (2020), DOI: 10.1016/j.matpr.2020.05.191.
- [35] Krishnan S.S.J., Momin M., Nwaokocha C., Sharifpur M., Meyer J.P., An empirical study on the persuasive particle size effects over the multi-physical properties of monophase MWCNT-Al2O3 hybridized nanofluids, Journal of Molecular Liquids, vol. 361, 119668 (2022), DOI: 10.1016/j.molliq.2022.119668.
- [36] Hewitt C.A., Craps M., Czerw R., Carroll D.L., The effects of high energy probe sonication on the thermoelectric power of large diameter multiwalled carbon nanotubes synthesized by chemical vapor deposition, Synthetic Metals, vol. 184, pp. 68–72 (2013), DOI: 10.1016/j.synthmet.2013.09.026.
- [37] Du B., Liu Q., Shi Y., Zhao Y., The Effect of Fe3O4 Nanoparticle Size on Electrical Properties of Nanofluid Impregnated Paper and Trapping Analysis, Molecules, vol. 25, 3566 (2020), DOI: 10.3390/molecules25163566.
- [38] Aydin D.Y., Gürü M., Sözen A., Çiftçi E., Investigation of the effects of base fluid type of the nanofluid on heat pipe performance, Proceedings of the Institution of Mechanical Engineers Part A-Journal of Power and Energy, vol. 235, no. 1, pp. 124–138 (2021), DOI: 10.1177/0957650920916285.
- [39] Amankeldi F., Issakhov M., Pourafshary P., Ospanova Z., Gabdullin M., Miller R., Foam Stabilization by Surfactant/SiO2 Composite Nanofluids, Colloids, vol. 7, 57 (2023), DOI: 10.3390/colloids7030057.
- [40] Kumar L.H., Kazi S.N., Masjuki H.H., Zubir M.N.M., A review of recent advances in green nanofluids and their application in thermal systems, Chemical Engineering Journal, vol. 429, 132321 (2022), DOI: 10.1016/j.cej.2021.132321.
- [41] Yang X., Yu I.K.M., Tsang D.C.W., Budarin V.L., Clark J.H., Wu K.C.W., Yip A.C.K., Gao B., Lam S.S., Ok Y.S., Ball-milled, solvent-free Sn-functionalisation of wood waste biochar for sugar conversion in food waste valorisation, Journal of Cleaner Production, vol. 268, 122300 (2020), DOI: 10.1016/j.jclepro.2020.122300.
- [42] Ghalandari M., Maleki A., Haghighi A., Shadloo M.S., Nazari M.A., Tlili I., Applications of nanofluids containing carbon nanotubes in solar energy systems: A review, Journal of Molecular Liquids, vol. 313, 113476 (2020), DOI: 10.1016/j.molliq.2020.113476.
- [43] Eshgarf H., Kalbasi R., Maleki A., Shadloo M.S., Karimipour A., A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption, Journal of Thermal Analysis and Calorimetry, vol. 144, no. 5, pp. 1959–1983 (2021), DOI: 10.1007/s10973-020-09998-w.
- [44] Yasmin H., Giwa S.O., Noor S., Aybar H.Ş., Influence of Preparation Characteristics on Stability, Properties, and Performance of Mono- and Hybrid Nanofluids: Current and Future Perspective, Machines, vol. 11, no. 1, 112 (2023), DOI: 10.3390/machines11010112.
- [45] Younes H., Mao M.Y., Murshed S.M.S., Lou D., Hong H.P., Peterson G.P., Nanofluids: Key parameters to enhance thermal conductivity and its applications, Applied Thermal Engineering, vol. 207, 118202 (2022), DOI: 10.1016/j.applthermaleng.2022.118202.
- [46] Choukourov A., Nikitin D., Pleskunov P., Tafiichuk R., Biliak K., Protsak M., Kishenina K., Hanus J., Dopita M., Cieslar M., Popelar T., Ondic L., Varga M., Residual- and linker-free metal/polymer nanofluids prepared by direct deposition of magnetron-sputtered Cu nanoparticles into liquid PEG, Journal of Molecular Liquids, vol. 336, 116319 (2021), DOI: 10.1016/j.molliq.2021.116319.
- [47] Seifikar F., Azizian S., Eslamipanah M., Jaleh B., One step synthesis of stable nanofluids of Cu, Ag, Au, Ni, Pd, and Pt in PEG using laser ablation in liquids method and study of their capability in solar-thermal conversion, Solar Energy, vol. 246, pp. 74–88 (2022), DOI: 10.1016/j.solener.2022.09.040.
- [48] Shenoy U.S., Shetty A.N., Simple glucose reduction route for one-step synthesis of copper nanofluids, Applied Nanoscience, vol. 4, no. 1, pp. 47–54 (2014), DOI: 10.1007/s13204-012-0169-6.
- [49] Zhou L., Zhu J.W., Ma H.H., One-step synthesis of Cu/Therminol VP-1 nanofluids by phase transfer method and their thermal stability and thermophysical properties, Journal of Nanoparticle Research, vol. 26, no. 2, 35 (2024), DOI: 10.1007/s11051-024-05950-3.
- [50] Ali A.I., Salam B., A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application, SN Applied Sciences, vol. 2, no. 10, 1636 (2020), DOI: 10.1007/s42452-020-03427-1.
- [51] Sharma B., Sharma S.K., Gupta S.M., Kumar A., Modified Two-Step Method to Prepare Long-Term Stable CNT Nanofluids for Heat Transfer Applications, Arabian Journal for Science and Engineering, vol. 43, no. 11, pp. 6155–6163 (2018), DOI: 10.1007/s13369-018-3345-5.
- [52] Koltunowicz T.N., Zukowski P., Boiko O., Fedotov A.K., Larkin A.V., Presence of Inductivity in (CoFeZr)(x) (PZT)(1−x) Nanocomposite Produced by Ion Beam Sputtering, Acta Physica Polonica A, vol. 128, no. 5, pp. 853–856 (2016)v.
- [53] Boiko O., Drozdenko D., Minárik P., Dielectric properties, polarization process, and charge transport in granular (FeCoZr)(x) (Pb(ZrTi)O3)(100−x) nanocomposites near the percolation threshold, AIP Advances, vol. 12, no. 2, 025306 (2022), DOI: 10.1063/6.0001356.
- [54] Chereches E.I., Minea A.A., Electrical Conductivity of New Nanoparticle Enhanced Fluids: An Experimental Study, Nanomaterials, vol. 9, no. 9, 1228 (2019), DOI: 10.3390/nano9091228
- [55] Awin E., Sajith V., Sobhan C., Peterson G., Electrical and thermal conductivities of dilute nanofluids— experimental determination and parametric studies, Journal of Nanofluids, vol. 5, no. 5, pp. 653–660 (2016), DOI: 10.1166/jon.2016.1258.
- [56] Farade R.A., Wahab N.I.A., Mansour D.E.A., Azis N.B., Jasni J.B., Veerasamy V., Vinayagam A., Kotiyal B.M., Khan T.M.Y., The Effect of Interfacial Zone Due to Nanoparticle-Surfactant Interaction on Dielectric Properties of Vegetable Oil Based Nanofluids, IEEE Access, vol. 9, pp. 107033–107045 (2021), DOI: 10.1109/ACCESS.2021.3098758.
- [57] Wang Z.Y., Zhang L.L., Liu X.L., Ye L., Zhao S., Chen Y.Y., Yan H.Y., Han J.H., Lin H., Superwetting Nanofluids of NiOx-Nanocrystals/CsBr Solution for Fabricating Quality NiOx-CsPbBr3 Gradient Hybrid Film in Carbon-Based Perovskite Solar Cells, Small Methods, DOI: 10.1002/smtd.202400283 (Early Access).
- [58] Ghosh S., Subudhi S., Developments in fuel cells and electrochemical batteries using nanoparticles and nanofluids, Energy Storage, vol. 4, no. 3, e288 (2022), DOI: 10.1002/est2.288.
- [59] Kristiawan B., Wijayanta A.T., Juwana W.E., A preliminary study on the potency of nanofluids as the electroactive materials for nanoelectrofuel flow batteries, AIP Conference Proceedings, vol. 2017, 030010 (2016), DOI: 10.1063/1.4943434.
- [60] Ibrahim A., Ramadan M.R., Khallaf A., Abdulhamid M., A comprehensive study for Al2O3 nanofluid cooling effect on the electrical and thermal properties of polycrystalline solar panels in outdoor conditions, Environmental Science and Pollution Research, vol. 30, no. 49, pp. 106838–106859 (2023), DOI: 10.1007/s11356-023-25928-3.
- [61] Wei S.H., Balakin B.V., Kosinski P., Investigation of nanofluids in alkaline electrolytes: Stability, electrical properties, and hydrogen production, Journal of Cleaner Production, vol. 414, 137723 (2023), DOI: 10.1016/j.jclepro.2023.137723.
- [62] Tsai T.H., Chen P.H., Lee D.S., Yang C.T., Investigation of electrical and magnetic properties of ferro-nanofluid on transformers, Nanoscale Research Letters, vol. 6, 264 (2011), DOI: 10.1186/1556- 276X-6-264.
- [63] Doganay S., Cetin L., Ezan M.A., Turgut A., A rotating permanent magnetic actuator for micropumping devices with magnetic nanofluids, Journal of Micromechanics and Microengineering, vol. 30, no. 7, 075012 (2020), DOI: 10.1088/1361-6439/ab8dd1.
- [64] Gang Q., Wang R.T., Wang J.C., Estimations on Properties of Redox Reactions to Electrical Energy and Storage Device of Thermoelectric Pipe (TEP) Using Polymeric Nanofluids, Polymers, vol. 13, no. 11, 1812 (2021), DOI: 10.3390/polym13111812.
- [65] Vahl A., Carstens N., Strunskus T., Faupel F., Hassanien A., Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices, Scientific Reports, vol. 9, 17367 (2019), DOI: 10.1038/s41598-019-53720-2.
- [66] Pereira J.E., Moita A.S., Moreira A.L.N., The pressing need for green nanofluids: A review, Journal of Environmental Chemical Engineering, vol. 10, no. 3, 107940 (2022), DOI: 10.1016/j.jece.2022.107940.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7596df35-4a74-45fd-a6a7-1f238b88d32c