Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 31, no. 6 | 15--29
Tytuł artykułu

Effect of the Surface modification of Cellulose nanofibers on the Mechanical Properties and Disintegrability of Specific PLA/Cellulose Composites

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
PLA/nanofibrillar cellulose (NFC) composite films were produced by solution casting. Before use, the cellulose fibers were modified with various types of surface active agents – cationic, anionic and non-ionic surfactants. The structure and morphology of samples of the cellulose fillers and composite films with polymer were analyzed by means of scanning electron microscopy and PXRD diffraction. Thermal parameters of the composite films were characterized by differential scanning calorimetry and thermogravimetric analysis. The tensile strength and elongation at break of the films were evaluated in mechanical tests. The ability to disintegrate of all PLA/NFC composites under composting conditions was also determined and compared.
Słowa kluczowe
Wydawca

Rocznik
Strony
15--29
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Łukasiewicz – Lodz Institute of Technology , 19/27 M. Skłodowska-Curie
  • Łukasiewicz – Lodz Institute of Technology , 19/27 M. Skłodowska-Curie
Bibliografia
  • 1. Gałęski A. (ed.): Stan i perspektywy rozwoju materiałów polimerowych (in Polish), CBMM PAN, Łódź (2008), chapter 4
  • 2. Trznadel M. Biorozkładowalne materiały polimerowe (in Polish). Polimery 1995; 40(9): 485.
  • 3. Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci 2010; 35: 338–356.
  • 4. Gruber P. R. et al.; US 5142023, 1992
  • 5. Vatansever E, Arslan D, Nofar M. Polylactide cellulose-based nanocomposites. International Journal of Biological Macromolecules 2019; 137: 912–938.
  • 6. Xiang Qi, Yiwei Ren, Xingzu Wang, New advances in the biodegradation of Poly(lactic) acid. International Biodeterioration & Biodegradation 2017; 117: 215-223.
  • 7. Pluta M. Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization, Polymer 2004; 45: 8239.
  • 8. Alvarado N, Romero J, Torres A, López de Dicastillo C, Rojas A, Galotto J , Guarda M. Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibres: Development an active food packaging material. J Food Eng 2018; 217: 1-10.
  • 9. Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C, et al. Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 2009; 26: 2027-2036.
  • 10. Savioli Lopes M., Jardini AL, Maciel Filho R. Poly(lactic acid) production for tissue engineering applications Procedia Engineering 2012; 42: 1402-1413.
  • 11. Pinar A, Mielicka E. Assessment of Polylactide Properties for Use in Knitted Clothing Products. Fibres Text East Eur 2021; 29, 5(149): 66-74.
  • 12. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci 2012;37: 1657–1677
  • 13. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M-C. Poly (lactic acid) blends: processing, properties and applications. Int J Biol Macromol 2019; 125: 307–360.
  • 14. Nofar M, Park CB. Poly (lactic acid) foaming. Prog Polym Sci 2014;39: 1721–1741.
  • 15. Nofar M, Salehiyan R, Ray SS: Rheology of poly (lactic acid)-based systems. Polym. Rev. 2019; 59 (3): 465-509.
  • 16. Li C., Sun C., Wang C., Tan H., Xie Y., Zhang Y.Cellulose nanocrystal reinforced poly(lactic acid) nanocomposites prepared by a solution precipitation approach. Cellulose 2020; 27: 7489–7502.
  • 17. Ilyas RA, Sapuan SM, Sanyang ML, Ishak, MR, Zainudin E. S.: Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review. Curr Anal Chem 2018; 14: 203–225.
  • 18. Nazrin A, Sapuan SM, Zuhri MYM, Ilyas RA, Syafiq R, Sherwani SFK. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Frontiers in Chemistry 2020; 8: Article 213.
  • 19. Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A, Galeski A. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites Prog Polym Sci 2018; 87: 197–227.
  • 20. Kyutoku H, Maeda N, Sakamoto H., Nishimura H, Yamada K. Effect of surface treatment of cellulose fibre (CF) on durability of PLA/CF bio-composites. Carbohydr Polym 2019; 203: 95–102
  • 21. Almasi H, Ghanbarzadeh B., Dehghannya J., Entezami AA, Asl AK, Novel nanocomposites based on fatty acid modified cellulose nanofibres/poly(lactic acid): morphological and physical properties, Food Packaging and Shelf Life 2015; 5: 21–31.
  • 22. Ghasemi S, Behrooz R, Ghasemi I, Yassar RS, Long F. Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). J Thermoplast Compos 2018; 31, 1090–1101.
  • 23. Ling Z, Kai K, Ming-Bo Y, Wei Y. Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite. Composites Communications 2021;23: 100548.
  • 24. Lee JH, Park SH, Kim SH. Surface modification of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromol. Res. 2014; 22: 424–430.
  • 25. Oksman K, Aitomäki Y, Mathew A, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S. Review of the recent developments in cellulose nanocomposite processing, Composites: Part A 2016; 83: 2–18.
  • 26. Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ. Characterisation of solution cast cellulose nanofibre - reinforced poly(lactic acid). EXPRESS Polym Lett 2010; 4 (1): 26–31.
  • 27. Orellana JL, Wichhart D, Kitchens ChL. Mechanical and Optical Properties of Polylactic Acid Films Containing Surfactant-Modified Cellulose Nanocrystals. J Nanomater 2018, Article ID 7124260, 12 pages.
  • 28. Wang Q, Ji Ch, Sun J, Zhu Q, Liu J. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils, Molecules 2020; 25: 3306.
  • 29. https://www.natureworksllc.com/technology-and-products/products
  • 30. Lee JH, Park SH, Kim SH. Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromol Res 2013; 21: 1218–1225.
  • 31. Arslan D, Vatansever E, Sarul DS, Kahraman Y, Gunes G, Durmus A, Nofar M. Effect of preparation method on the properties of polylactide/cellulose nanocrystal nanocomposites, Polymer Composites. 2020;1–11.
  • 32. http://ifbb-knvb.wp.hs-hannover.de/db/files/downloads/TechnicalDataSheet_6201D_fiber-melt-spinning_pdf_1430990927.pdf
  • 33. Jóźwicka J, Gzyra-Jagieła K, Gutowska A, Twarowska-Schmidt K, Ciepliński M. Chemical Purity of PLA Fibres for Medical Devices. Fibres Text East Eur. 2012; 20: 135 —141.
  • 34. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 2010; 3: 10.
  • 35. Checchetto R, Rigotti D, Pegoretti A, Miotello A. Chloroform desorption from poly(lactic acid) nanocomposites: a thermal desorption spectroscopy study. Pure Appl Chem 2020; 92(3): 391–398.
  • 36. Ma B, Wang X, He Y, Dong Z, Zhang X, Chen X, Liu T. Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances Polymer 2021; 212: 123280.
  • 37. Luzi F, Fortunati E, Puglia D, Petrucci R, Kenny JM, Torre L. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polym Degrad Stabil 2015; 121: 105–115.
  • 38. Hubbe MA, Lavoine N, Lucia LA, Dou C. Formulating bioplastic composites for biodegradability, recycling, and performance: A Review BioResources 16; 1 2021-2083.
  • 39. Trifol J, Plackett D, Szabo P, Daugaard AE, Baschetti MG. Effect of Crystallinity on Water Vapor Sorption, Diffusion, and Permeation of PLA-Based Nanocomposites. ACS Omega 2020; 5 (25): 15362-15369
  • 40. Gois G, Santos A, Hernandéz E, Medeiros E, Almeida Y. Biodegradation of PLA/CNC composite modified with non-ionic surfactants. Polym. Bull. 2023; 80: 11363–11377.
  • 41. de Jong SJ, Arias ER, Rijkers DTS, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus, Polymer, 2001; 42 (7): 2795- 2802.
  • 42. Giełdowska M, Puchalski M, Sztajnowski S, Krucińska I. Evolution of the Molecular and Supramolecular Structures of PLA during the Thermally Supported Hydrolytic Degradation of Wet Spinning Fibers Macromolecules 2022; 55 (22): 10100–10112.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7570d5a8-a9ee-48ed-a669-025cfe69c9b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.