Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 41, no. 4 | 1378--1389
Tytuł artykułu

Ventilation inhomogeneity in CDH infants – A new attitude within a simulation study

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Congenital Diaphragmatic Hernia (CDH) is a serious newborn defect requiring mechanical ventilation. Initial ventilation settings should take into account the severity of lungs inhomogeneity (LI), but it is not assessed in everyday clinical practice. We present a new LI index that can be easily determined at the bedside. It is based on a comparison of resistive-elastic properties of lungs and defined as a ratio of time constants T1 T2_1 of gas flows in both lungs (T1 = R1∙C1, T2 = R2∙C2). We hypothesised that T1 T2_1 index increase causes a rise of lungs impedance (Z) and requires elevation of peak inspiratory pressure (PIP), mean airway pressure (MAP), and work of breathing (WOB). Infant hybrid (numerical-physical) respiratory simulator and a ventilator were used to simulate conventional ventilation of homogeneous and inhomogeneous lungs, and to measure PIP, MAP and WOB. A high correlation was found between Z, WOB, PIP, MAP and the T1T2_1 index (r = 0.9, P < 0.001). The increase of T1T2_1 index from 1 to 20 resulted in significant rise of WOB, PIP and MAP, e.g. at RR = 60 bpm, the WOB (1.05 → 1.49∙J_l), PIP (15.2 →20.5 cmH2O) and MAP (6.8 → 8.4 cmH2O), P < 0.005. It seems that T1T2_1 index could be used for prediction of PIP and MAP required to achieve effective ventilation in CDH infants; it also may affect the choice of ventilation strategy (CMV or HFV) as well as ventilator settings on CMV. We show how the relationships between WOB, PIP, MAP and the T1T2_1
Wydawca

Rocznik
Strony
1378--1389
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena 4, 02-109 Warsaw, Poland, bstankiewicz@ibib.waw.pl
  • Department of Paediatric Anaesthesiology and Intensive Therapy, Medical University of Warsaw, Warsaw, Poland, mmierzewska@wum.edu.pl
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland, kgorczynska@ibib.waw.pl
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland, kpalko@ibib.waw.pl
  • Department of Paediatric Anaesthesiology and Intensive Therapy, Medical University of Warsaw, Warsaw, Poland, artur.baranowski@uckwum.pl
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland, mkozarski@ibib.waw.pl
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland, mdar@ibib.waw.pl
Bibliografia
  • [1] Anagnostopoulou P, Egger B, Lurà MP, Usemann J, Schmidt A, Gorlanova O, et al. Multiple breath washout analysis in infants: quality assessment and recommendations for improvement. Physiol Meas 2016;37(3):L1–L15. Available from: https://iopscience.iop.org/article/10.1088/0967-3334/37/3/L1/data.
  • [2] Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, et al. Consensus statement for inert gas washout measurement using multiple- and single-breath tests. Eur Respir J 2013;41:507–22. https://doi.org/10.1183/09031936.00069712.
  • [3] Snoek KG, Greenough A, van Rosmalen J, Capolupo I, Schaible T, Ali K, et al. Congenital Diaphragmatic Hernia: 10-Year Evaluation of Survival, Extracorporeal Membrane Oxygenation, and Foetoscopic Endotracheal Occlusion in Four High-Volume Centers. Neonatology 2018;113(1):63–8. https://doi.org/10.1159/000480451.
  • [4] Coughlin MA, Werner NL, Gajarski R, Gadepalli S, Hirschl R, Barks J, et al. Prenatally diagnosed severe CDH: mortality and morbidity remain high. J Pediatr Surg 2016;51(7):1091–5. https://doi.org/10.1016/j.jpedsurg.2015.10.082.
  • [5] Kumar VH. Current Concepts in the Management of Congenital Diaphragmatic Hernia in Infants. Indian J Surg 2015;77(4):313–21. https://doi.org/10.1007/s12262-015-1286-8.
  • [6] Snoek KG, Reiss IKM, Greenough A, Capolupo I, Urlesberger B, Wessel L, et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO consortium consensus - 2015 update. Neonatology 2016;110:66-74 10.1159/000444210.
  • [7] Prendergast M, Rafferty GF, Milner AD, Broughton S, Davenport M, Jani J, et al. Lung function at follow-up of infants with surgically correctable anomalies. Pediatr Pulmonol 2012;47(10):973–8. https://doi.org/10.1002/ppul.22515.
  • [8] van den Hout L, Tibboel D, Vijfhuize S, te Beest Hop W, Reiss I, CDH-EURO Consortium. The VICI-trial: high frequency oscillation versus conventional mechanical ventilation in newborns with congenital diaphragmatic hernia: an international multicentre randomized controlled trial. BMC Pediatr 2011;11:98. https://doi.org/10.1186/1471-2431-11-98.
  • [9] Jancelewicz T, Brindle ME, Guner YS, Lally PA, Lally KP, Harting MT. for Congenital Diaphragmatic Hernia Study Group (CDHSG) and Pediatric Surgery Research Collaborative (PedSRC). Toward Standardized Management of Congenital Diaphragmatic Hernia: An Analysis of Practice Guidelines. J Surg Res 2019;243:229–35. https://doi.org/10.1016/j.jss.2019.05.007.
  • [10] Ellemunter H, Fuchs SI, Unsinn KM, Freund MC, Waltner-Romen M, Steinkamp G, et al. Sensitivity of lung clearance index and chest computed tomography in early cf lung disease. Respir Med 2010;104:1834–42. https://doi.org/10.1016/j.rmed.2010.06.010.
  • [11] Fuchs O, Latzin P, Thamrin C, Stern G, Frischknecht P, Singer F, et al. Normative data for lung function, exhaled nitric oxide in unsedated healthy infants. Eur Respir J 2011;37:1208–16. https://doi.org/10.1183/09031936.00125510.
  • [12] Fuchs SI, Monika GM. Lung clearance index: clinical and research applications in children. Paediatr Respir Rev 2011;12:264–70. https://doi.org/10.1016/j.prrv.2011.05.001.
  • [13] Kieninger E, Singer F, Fuchs O, Abbas Ch, Frey U, Regamey N, et al. Long-term course of lung clearance index between infancy and school-age in cystic fibrosis subjects. J Cyst Fibros 2011;10:487–90. https://doi.org/10.1016/j.jcf.2011.07.006.
  • [14] Horsley A. Lung clearance index in the assessment of airways disease. J Respir Med 2009;103:793–9. https://doi.org/10.1016/j.rmed.2009.01.025.
  • [15] Bikker IG, Holland W, Specht P, Ince C, Gommers D. Assessment of ventilation inhomogeneity during mechanical ventilation using a rapid-response oxygen sensor-based oxygen washout method. Intensive Care Med Exp 2014;2(1):14. https://doi.org/10.1186/2197-425X-2-14.
  • [16] Latzin P, Thamrin C, Kraemer R. Ventilation inhomogeneities assessed by the multibreath washout (MBW) technique. Thorax 2008;63(2):98–9. https://doi.org/10.1136/thx.2007.085332.
  • [17] Schmalisch G, Wilitzki S, Bührer Ch, Fischer HS. The lung clearance index in young infants: impact of tidal volume and dead space. Physiol Meas 2015;36:1601–13. https://doi.org/10.1088/0967-3334/36/7/1601.
  • [18] Dao DT, Hayden LP, Buchmiller TL, Kharasch VS, Kamran A, Smithers CJ, et al. Longitudinal Analysis of Pulmonary Function in Survivors of Congenital Diaphragmatic Hernia. J Pediatr 2020;216:158–164.e2. https://doi.org/10.1016/j.jpeds.2019.09.072.
  • [19] Arigliani M, Valentini E, Stocco C, De Pieri C, Castriotta L, et al. Regional ventilation inhomogeneity in survivors of extremely preterm birth. Pediatr Pulmonol 2020;55:1366–74. https://doi.org/10.1002/ppul.24742.
  • [20] Stankiewicz B, Pałko KJ, Darowski M, Kozarski M. A new infant hybrid respiratory simulator: preliminary evaluation based on clinical data. Med Biol Eng Comput 2017;55:1937–48. https://doi.org/10.1007/s11517-017-1635-9.
  • [21] Michnikowski M, Glapiński J, Guc M, Gólczewski T, Darowski M. A hybrid model of the respiratory system. Biocybernet Biomed Eng 2009;29(1):71–80.
  • [22] Kozarski M, Ferrari G, Zielinski K, Górczyńska K, Palko KJ, Fresiello L, et al. A Hybrid (hydro-numerical) Cardiovascular Model: Application to Investigate Continuous-flow Pump Assistance Effect. Biocybernet Biomed Eng 2012;32(4):77–91.
  • [23] Kozarski M, Suwalski P, Zielinski K, Górczynska K, Szafron B, Palko K, et al. A hybrid (hydro-numerical) circulatory model: investigations of mechanical aortic valves and a numerical valve model. Bull Polish Acad Sci Techn Sci 2015;63:605–12. https://doi.org/10.1515/BPASTS-2015-0071.
  • [24] Cuttano A, Scaramuzzo RT, Gentile M, et al. Education in neonatology by simulation: between reality and declaration of intent. J Maternal-Fetal Neonatal Med 2011;24:97–8. https://doi.org/10.3109/14767058.2011.607572.
  • [25] Sawyer T, Strandjord TP, Johnson KLD, Low D. Neonatal airway simulators, how good are they? A comparative study of physical and functional fidelity. J Perinatol 2016;36:151–6. https://doi.org/10.1038/jp.2015.161.
  • [26] Rovamo L, Nurmi E, Mattila MM, Suominen P, Silvennoinen M. Effect of a simulation-based workshop on multidisciplinary teamwork of newborn emergencies: an intervention study. BMC Res Notes 2015;8:671. https://doi.org/10.1186/s13104-015-1654-2.
  • [27] Baldoli I, Cuttano A, Scaramuzzo RT, Tognarelli S, Ciantelli M, Cecchi F, Gentile M, Sigali E, Laschi C, Ghirri P, Menciassi A, Dario P, Boldrini A. A novel simulator for mechanical ventilation in newborns: MEchatronic REspiratory System SImulator for Neonatal Applications. Proc Inst Mech Eng H. 2015;229(8):581–91. 10.1177%2F0954411915593572.
  • [28] Johnston L, Silvestri T, Dudgeon J, Sherlock J, Gibbs J, Forbush R. Evaluation of Three Sizes of Nasal Cannula Interface to Deliver NIV to Neonates Using a Lung Simulator. Respir Care 2019;64(Suppl. 10):3239251.
  • [29] Ejiofor BD, Carroll RW, Bortcosh W, Kacmarek RM. PEEP Generated by High-Flow Nasal Cannula in a Pediatric Model. Respir Care 2019;64(10):1240–9. https://doi.org/10.4187/respcare.06470.
  • [30] Cecchini S, Schena E, Silvestri S. An open-loop controlled active lung simulator for preterm infants. Med Eng Phys 2011;33(1):47–55. https://doi.org/10.1016/j.medengphy.2010.09.001.
  • [31] Scaramuzzo RT, Ciantelli M, Baldoli I, Bellanti L, Gentile M, Cecchi F, et al. MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA) project: a novel bioengineering goal. Med Dev Evidence Res 2013;6:115–21. https://doi.org/10.2147/MDER.S45524.
  • [32] Vignaux L, Piquilloud L, Tourneux P, et al. Neonatal and adult ICU ventilators to provide ventilation in neonates, infants, and children: a bench model study. Respir Care 2014;59:1463–75. https://doi.org/10.4187/respcare.02540.
  • [33] Stankiewicz B, Darowski M, Pałko KJ. Influence of Preterm Birth, BPD and Lung Inhomogeneity on Respiratory System Impedance – Model Studies. In: Augustyniak P, Maniewski R, Tadeusiewicz R (eds). Recent Developments and Achievements in Biocybernetics and Biomedical Engineering. Advances in Intelligent Systems and Computing 2017;647:68–83. Warsaw: Springer, Cham; 2017 [chapter 6]. 10.1007/978-3-319-66905-2.
  • [34] Stankiewicz B, Pałko KJ, Darowski M, Kozarski M, Górczyńska K. Challenges with Conventional Ventilation of Infants with Inhomogeneous Lungs. In: Korbicz J, Maniewski R, Patan K, Kowal M (eds). Current Trends in Biomedical Engineering and Bioimages Analysis. PCBEE 2019. Advances in Intelligent Systems and Computing, vol. 1033. Springer, Cham; 2020. 10.1007/978-3-030-29885-2_21.
  • [35] Morini F, Capolupo I, van Weteringen W, Reiss I. Ventilation modalities in infants with congenital diaphragmatic hernia. Semin Pediatr Surg 2017;26(3):159–65. https://doi.org/10.1053/j.sempedsurg.2017.04.003.
  • [36] Wheeler DS, Wong HR, Shaney T. Pediatric Critical Care Medicine. Basic Science and Clinical Evidence. London: Springer-Verlag; 2007 [chapter 50].
  • [37] Rimensberger PC. Paediatric and Neonatal Mechanical Ventilation from Basics to Practice. Berlin: Springer-Verlag; 2015 [chapter 23].
  • [38] Guevorkian D, Mur S, Cavatorta E, Pognon L, Rakza T, Storme L. Lower distending pressure improves respiratory mechanics in congenital diaphragmatic hernia complicated by persistent pulmonary hypertension. J Pediatr 2018;200:38–43. https://doi.org/10.1016/j.peds.2018.04.027.
  • [39] Dotta A, Palamides S, Braguglia A, Cresceni F, Ronchetti MP, Calzori F, et al. Lung volumes and distribution of ventilation in survivors to congenital diaphragmatic hernia (CDH) during infancy. Pediatr Pulmonol 2007;42(7):600–4. https://doi.org/10.1002/ppul.20609.
  • [40] Proquitté H, Freiberger O, Yilmaz S, Bamberg C, Degenhardt P, Roehr CC, et al. The effect of surgery on lung volume and conventional monitoring parameters in ventilated newborns infants. Eur Respir J 2010;35:1072–8. https://doi.org/10.1183/09031936.00058009.
  • [41] Sakai H, Tamura M, Hosokawa Y, Bryan AC, Barker GA, Bohn DJ. Effect of surgical repair on respiratory mechanics in congenital diaphragmatic hernia. J Pediatr 1987;111(3):432–8. https://doi.org/10.1016/S0022-3476(87)80475-4.
  • [42] Rygl M, Rounova P, Sulc J, Slaby K, Stranak Z, Pycha K, et al. Abnormalities in pulmonary function in infants with highrisk congenital diaphragmatic hernia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015;159(3):497–502. https://doi.org/10.5507/bp.2015.040.
  • [43] Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970;28(5):596–608.
  • [44] Rausch SMK, Haberthür D, Stampanoni M, Schittny JC, Wall WA. Local Strain Distribution in Real Three-Dimensional Alveolar Geometries. Ann Biomed Eng 2011;39(11):2835–43. https://doi.org/10.1007/s10439-011-0328-z.
  • [45] Flageole H, Evrard VA, Piedboeuf B, Laberge JM, Lerut TE, Deprest JA. The plug-unplug sequence: an important step to achieve type II pneumocyte maturation in the fetal lamb model. J Pediatr Surg 1998;33(2):299–303. https://doi.org/10.1016/S0022-3468(98)90451-1.
  • [46] Tsao K, Semin Johnson A. Fetal tracheal occlusion for congenital diaphragmatic hernia. Semininars. Perinatology 2020;44(1):151–64. https://doi.org/10.1053/j.semperi.2019.07.003.
  • [47] Cogo PE, Simonato M, Danhaive O, Verlato G, Cobellis G, Savignoni F, et al. Impaired surfactant protein B synthesis in infants with congenital diaphragmatic hernia. Eur Respir J 2013;41(3):677–82. https://doi.org/10.1183/09031936.00032212.
  • [48] Janssen DJ, Zimmermann LJ, Cogo P, Hamvas A, Bohlin K, Luijendijk IH, et al. Decreased surfactant phosphatidylcholine synthesis in neonates with congenital diaphragmatic hernia during extracorporeal membrane oxygenation. Intensive Care Med 2009;35(10):1754–60. https://doi.org/10.1007/s00134-009-1564-7.
  • [49] Gray DM, Willemse L, Alberts A, Simpson S, Hall GL, Zar HJ. Lung Function in African Infants: A Pilot Study. Pediatr Pulmonol 2015;50:49–54. https://doi.org/10.1002/ppul.22965.
  • [50] Landolfo F, Savignoni F, Capolupo I, Columbo C, Calzolari F, Giliberti P, et al. Functional residual capacity (FRC) and lung clearance index (LCI) in mechanically ventilated infants: application in the newborn with congenital diaphragmatic hernia (CDH). J Pediatr Surg. 2013;48(7):1459–62. https://doi.org/10.1016/j.jpedsurg.2012.12.047.
  • [51] Kimura S, Toyoshima K, Shimokaze T, Hoshino R. Using airway resistance measurement to determine when to switch ventilator modes in congenital diaphragmatic hernia: a case report. BMC Pediatr 2020;20:365. https://doi.org/10.1186/s12887-020-02258-8.
  • [52] Baerg J, Thirumoorthi A, Hazboun R. Congenital Diaphragmatic Hernia. London: IntechOpen Ltd; 2017 [chapter 10]. 10.5772/intechopen.69362. Accessed from: https://www.intechopen.com, October 7, 2020.
  • [53] Permall DL, Pasha AB, Chen XQ. Current insights in noninvasive ventilation for the treatment of neonatal respiratory disease. Ital J Pediatr. 2019 Aug 19;45(1):105. https://doi.org/10.1186/s13052-019-0707-x.
  • [54] Amin R, Arc MJ. Feasibility of Non-invasive neurally adjusted ventilator assist after Congenital Diaphragmatic Hernia repair. J Pediatr Surg 2019;54:434–43. https://doi.org/10.1016/j.jpedsurg.2018.05.011.
  • [55] Baldoli I, Tognarelli S, Scaramuzzo RT, Ciantelli M, Cecchi F, Gentile M, et al. Comparative performances analysis of neonatal ventilators. Ital J Pediatr 2015;41:9. https://doi.org/10.1186/s13052-015-0112-z.
  • [56] Chakkarapani AA, Adappa R, Ali SKM, Gupta S, Soni NB, Chicoine L, et al. Current concepts of mechanical ventilation in neonates – Part 1: Basics. Int J Pediatr Adolesc Med 2020;7(1):15. https://doi.org/10.1016/j.ijpam.2020.03.003.
  • [57] Bland RD, Albertine KH, Carlton DP, Mac Ritchie AJ. Inhaled nitric oxide effects on lung structure and function in chronically ventilated preterm lambs. Am J Respir Crit Care Med 2005;172(7):899. https://doi.org/10.1164/rccm.200503-384OC.
  • [58] Novotny AM. The Use of Inhaled Nitric Oxide in Congenital Diaphragmatic Hernia. Adv Neonatal Care 2020;20(6):479. https://doi.org/10.1097/ANC.0000000000000753.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-75604a55-fb17-469f-8589-bdf050af5eb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.