Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 23, nr 2 | 93--104
Tytuł artykułu

Two-dimensional distributed order cable equation with non-singular kernel: a nonstandard implicit compact finite difference approach

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a higher-order nonstandard implicit compact finite difference technique is used to study a two-dimensional nonlinear distributed order Cable problem. The distributed fractional order is defined in the Atangana-Baleanu sense. The key advantage of this strategy is the large stability areas it implicitly has. A particular focus is on examining the stability analysis of the proposed scheme through the application of the Jon Von Neumann approach. We show the effectiveness of the numerical scheme using two numerical examples, and we compare our results with the published literature to check the accuracy of the approach we have presented. The technique is a helpful tool for modeling this model, as demonstrated by the results.
Wydawca

Rocznik
Strony
93--104
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Bagley, R.L., & Torvik, P.J. (2000). On the existence of the order domain and the solution of distributed order equations – Part I. International Journal of Applied Mathematics, 2(7), 865-882.
  • 2. Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation & Applications, 1(2), 73-85.
  • 3. Tarasov, V.E. (2019). On history of mathematical economics: Application of fractional calculus. Mathematics, 7(6), 509.
  • 4. Atangana, A., & Baleanu, D. (2016). New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. arXiv preprint arXiv:1602.03408.
  • 5. Balasim, A.T., & Ali, N.H.M. (2017). A comparative study of the point implicit schemes on solving the 2D time fractional cable equation. In: AIP Conference Proceedings (Vol. 1870, No. 1). AIP Publishing.
  • 6. Sweilam, N.H., Ahmed, S.M., & Adel, M. (2021). A simple numerical method for two-dimensional nonlinear fractional anomalous sub-diffusion equations. Mathematical Methods in the Applied Sciences, 44(4), 2914-2933.
  • 7. Adel, M., Sweilam, N.H., Khader, M.M., Ahmed, S.M., Ahmad, H., & Botmart, T. (2022). Numerical simulation using the non-standard weighted average FDM for 2Dim variable-order Cable equation. Results in Physics, 39, 105682.
  • 8. Sweilam, N.H., Khader, M.M. & Adel, M. (2014). On the fundamental equations for modeling neuronal dynamics. Journal of Advanced Research, 5(2), 253-259.
  • 9. Gao, X., Liu, F., Li, H., Liu, Y., Turner, I., & Yin, B. (2020). A novel finite element method for the distributed-order time fractional Cable equation in two dimensions. Computers & Mathematics with Applications, 80(5), 923-939
  • 10. Du, R., Cao, W.R., & Sun, Z.Z. (2010). A compact difference scheme for the fractional diffusion- wave equation. Applied Mathematical Modelling, 34(10), 2998-3007.
  • 11. Arenas, A.J., Gonzalez-Parra, G., & Chen-Charpentier, B.M. (2016). Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order. Mathematics and Computers in Simulation, 121, 48-63
  • 12. Mickens, R.E. (2002). Nonstandard finite difference schemes for differential equations. Journal of Difference Equations and Applications, 8(9), 823-847.
  • 13. Mickens, R.E. (2000). Applications of Nonstandard Finite Difference Schemes. World Scientific.
  • 14. Cui, M. (2009). Compact finite difference method for the fractional diffusion equation. Journal of Computational Physics, 228(20), 7792-7804.
  • 15. Mickens, R.E. (1999). Nonstandard finite difference schemes for reaction-diffusion equa tions. Numerical Methods for Partial Differential Equations: An International Journal, 15(2), 201-214.
  • 16. Podlubny, I. (1999). Fractional Differential Equations. San Diego, Boston: Academic Press, 6.
  • 17. Caputo, M. (2001). Distributed order differential equations modelling dielectric induction and diffusion. Fractional Calculus and Applied Analysis, 4(4), 421-442.
  • 18. Kumar, S., & Atangana, A. (2022). Numerical solution of ABC space–time fractional distributed order reaction-diffusion equation. Numerical Methods for Partial Differential Equations, 38(3), 406-421.
  • 19. Baleanu, D., Jajarmi, A., Bonyah, E., & Hajipour, M. (2018). New aspects of poor nutrition in the life cycle within the fractional calculus. Advances in Difference Equations, 2018(1), 1-14.
  • 20. Thomas, J. W. (2013). Numerical Partial Differential Equations – Finite Difference Methods (Vol. 22). Springer Science & Business Media.
  • 21. Glushkov, A.V., Khetselius, O.Y., Svinarenko, A.A., & Buyadzhi, V.V. (2015). Methods of Computational Mathematics and Mathematical Physics, P. 1. TES, Odessa.
  • 22. Ames, W.F. (2014). Numerical Methods for Partial Differential Equations. Academic Press.
  • 23. Yuste, S.B., & Acedo, L. (2003). On an explicit finite difference method for fractional diffusion equations. 22, DOI: 10.48550/arXiv.CS/0311011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7555cca2-01b0-40a8-8002-f05a62031ccb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.