Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | R. 97, nr 3 | 60--63
Tytuł artykułu

Development of automatic pitch angle control mathematical model for type-4 wind turbines specialized hybrid processor

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
System sterowania kątem w turbinie wiatrowej typu-4 z wykorzystanie specjalizowanego procesora hybrydowego
Języki publikacji
EN
Abstrakty
EN
The goal of this paper is to synthesize the intelligent pitch angle control system under variable wind conditions for the specialized processor that reproduces the operating modes of type-4 wind turbines in real time in the specialized software-hardware hybrid simulation tool. The control schemes using main strategies of a conventional control and an intelligent control with a fuzzy logic have been discussed. The strategy based on a combined pitch control system was adopted. As a result, the authors designed and implemented a comprehensive mathematical model for pitch angle control of wind turbines. The RTDS hardware-software tool was used as a reference for model validation. The results showed a fairly good similarity, therefore, the developed model can be applied to control the pitch angle in a hybrid model of type-4 wind turbines for wind power plants simulating in the large-scale electric power system.
PL
Przedstawiono system sterowania katą turbiny wiatrowej w czasie rzeczywistym. Do sterowania wykorzystano elementy logiki rozmytej. Wykorzystano oprogramowanie i sprzęt. Przeprowadzono symulacje dla różnych prędkości turbiny wiatrowej.
Wydawca

Rocznik
Strony
60--63
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia, lionrash@tpu.ru
  • Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia, suvorovaa@tpu.ru
  • Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia, andreevmv@tpu.ru
  • Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia, aba7@tpu.ru
Bibliografia
  • [1] Renewables 2020 Global Status Report GSR // Access mode: https://www.ren21.net/reports/global-status-report/.
  • [2] V. Akhmatov, “Analysis of dynamic behavior of electric power systems with large amount of wind power,” Ph.D. dissertation, Dept. Elect. Eng., Tech. Univ. Denmark, Kgs. Lyngby, Denmark, Apr. 2003.
  • [3] Y. Zhang, Z. Chen, W. Hu, and M. Cheng, “Flicker mitigation by individual pitch control of variable speed wind turbines with DFIG,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 20–28, Mar. 2014.
  • [4] Ackermann, T. Wind Power in Power Systems, John Wiley & Sons, Ltd, Chichester, 2012, p. 1088
  • [5] Renewable Energy Sources: Theoretical Basisyou, technology, technical characteristics, economy / ed. Stychinsky, N.I. Voropai. Magdeburg: MAFO, 2010 p. 223.
  • [6] IEC 61400-27-1:2015 Wind turbines - Part 27-1: Electrical simulation models - Wind turbines
  • [7] Dong-Choon Lee, Tan Luong Van, and Thanh Hai Nguyen, “Advanced Pitch Angle Control Based on Fuzzy Logic for Variable-Speed Wind Turbine Systems,” IEEE Trans.,Energy Conversion, № 30, no. 2, p. 578–587, June 2015
  • [8] J. F. Manwell, J. McGowan, A. Rogers. ‘Wind energy explained: theory design and applications’. John Wiley & Sons; 2002 p. 705.
  • [9] Siegfried Heier, Wind energy conversion systems, book, John Wiley & Sons Inc., New York, 1998.
  • [10] Munteanu, I., Bratcu, A.I., Cutululis, N.-A., Ceanga, E. Optimal control of wind energy systems – Towards a global approach. – Springer: Verlag London, 2007. p. 286.
  • [11] Michalke G, Hansen AD, Hartkopf T. Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator. Proceedings of the European Wind Energy Conference EWEC, Milan, Italy, 7–10 May 2007
  • [12] R. Sakamoto et al., "Output power leveling of wind turbine generator for all operating regions by pitch angle control," IEEE Power Engineering Society General Meeting, 2005, San Francisco, CA, 2005, pp. 45-52 Vol. 1, doi: 10.1109/PES.2005.1489543.)
  • [13] Benguergour I., Allaoui T., Kouadria A. M., Denai M., Optimization and Adaptive Control of Wind water Pumping System based on fuzzy RST and genetic RST, Przegląd Elektrotechniczny, Vol. 96, No. 2, 2020, pp. 193-199.
  • [14] Anderson P.M., Bose A., Stability simulation of wind turbine systems, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (12), pp. 3791–3795.
  • [15] Gajewski P., Pieńkowski K., Direct torque control and direct power control of wind turbine system with PMSG, Przegląd Elektrotechniczny, R. 92, no.10, 2016, pp 249-253
  • [16] Different Conventional Strategies of Pitch Angle Control for Variable Speed Wind Turbines 15th international conference on Sciences and Techniques of Automatic control & computer engineering - STA'2014, Hammamet, Tunisia, December 21- 23, 2014
  • [17] Hagras H., Wagner C. (2012) Towards the wide spread use of type-2 fuzzy logic systems in real world applications. IEEE Computational Intelligence Magazine 7: 14–24
  • [18] B. A. Carreras, D. E. Newman, I. Dobson. Does size matter? Chaos, vol. 24 (2), 2014, Art. ID 023104
  • [19] Suvorov, A., Gusev, A., Ruban, N., Andreev, M., Askarov, A., & Stavitsky, S. (2019). The Hybrid Real-Time Dispatcher Training Simulator: Basic Approach, Software-Hardware Structure and Case Study, International Journal of Emerging Electric Power Systems, 20(1), 20180165. doi: https://doi.org/10.1515/ijeeps- 2018-0165
  • [20] Suvorov, A., Gusev, A., Andreev, M. et al. The novel approach for electric power system simulation tools validation. Electr Eng 101, 457–466 (2019). https://doi.org/10.1007/s00202-019- 00795-9.
  • [21] Suvorov, A., Gusev, A., Ruban, N., Andreev, M., Askarov, A., Ufa, R., Razzhivin, I., Kievets, A., & Bay, J. (2019). Potential Application of HRTSim for Comprehensive Simulation of Large- Scale Power Systems with Distributed Generation, International Journal of Emerging Electric Power Systems, 20(5), 20190075. doi: https://doi.org/10.1515/ijeeps-2019-0075
  • [22] Ufa, R., Andreev, M., Ruban, N. et al. The hybrid model of VSC HVDC. Electr Eng 101, 11–18 (2019). https://doi.org/10.1007/s00202-018-00752-y
  • [23] IEA Wind Energy Annual Report 1992 // Access mode: https://community.ieawind.org/HigherLogic/System/DownloadD ocumentFile.ashx?DocumentFileKey=c87f90ec-b818-0e7cad9d- b48bcb0f624a&forceDialog=0
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7531fbab-0818-44a5-a689-0f76ee56ac45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.