Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 1 | 131--145
Tytuł artykułu

Biostimulator for Arid Pastures in the South of Kazakhstan

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Long-term unsystematic use of near-settlement pastures in the desert zone of South Kazakhstan had a negative impact on the physic-chemical parameters of Calcisol. Excessive grazing leads to trampling of soil and reduction of soil fertility. The aim of the study was to develop a technology to improve the productivity of degraded near-settlement pastures. The tasks of the research were to determine the effect application of environmental safe biostimulator and biofertilizer on microbial communities, the content of carbon and phosphorus in the soil, the effectiveness of biostimulator application on degraded pastures in order to increase green mass. For this purpose, geobotanical, bacteriological and helminthological methods of analysis were used. The result of the used proposed technology is the activation of soil microorganisms, which leads to the prevention of degradation of arid pastures. The results of the conducted research contribute to the introduction of a better technology to increase the productivity of arid near-settlement pastures. Statistical analysis of the experiments showed that all manipulations on soil microorganisms increase the number and green mass of arid plants.
Wydawca

Rocznik
Strony
131--145
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
  • M. Auezov South-Kazakhstan University, Tauke Khan Ave 5, Shymkent, 160012, Kazakhstan
  • M. Auezov South-Kazakhstan University, Tauke Khan Ave 5, Shymkent, 160012, Kazakhstan, kedelbaev@yandex.ru
  • South-West Research Institute of Animal Husbandry and Crop Husbandry, Shymkent, 160012, Kazakhstan
  • M. Auezov South-Kazakhstan University, Tauke Khan Ave 5, Shymkent, 160012, Kazakhstan
  • Abai Kazakh National Pedagogical University, 13, Dostyk avenue, Almaty, 050010, Kazakhstan
Bibliografia
  • 1. Ali, Sajid, Won-Chan Kim. 2019. A Fruitful Decade Using Synthetic Promoters in the Improvement of Transgenic Plants. Frontiers in Plant Science 10, 1433. https://doi.org/10.3389/fpls.2019.01433.
  • 2. Aydin, I., F. Uzun. 2005. Nitrogen and Phosphorus Fertilization of Rangelands Affects Yield, Forage Quality and the Botanical Composition. European Journal of Agronomy 23(1), 8–14. https://doi.org/10.1016/j.eja.2004.08.001.
  • 3. Badger Hanson, Ellen, Kathryn M. Docherty. 2023. Mini-Review: Current and Future Perspectives on Microbially Focused Restoration Strategies in Tallgrass Prairies. Microbial Ecology 85(3), 1087–97. https://doi.org/10.1007/s00248-022-02150-1.
  • 4. Bai, Yongfei, M. Francesca Cotrufo. 2022. Grassland Soil Carbon Sequestration: Current Understanding, Challenges, and Solutions. Science (New York, N.Y.) 377(6606), 603–8. https://doi.org/10.1126/science.abo2380.
  • 5. Bardgett, Richard D., Tania C. Streeter, Roland Bol. 2003. Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84(5), 1277–87. https://doi.org/10.1890/0012-9658(2003)084(1277:SMCEWP)2.0.CO;2.
  • 6. Beaumelle, Léa, Frederik De Laender, Nico Eisenhauer. 2020. Biodiversity Mediates the Effects of Stressors but Not Nutrients on Litter Decomposition. ELife 9(June), e55659. https://doi.org/10.7554/eLife.55659.
  • 7. Bell, Lindsay W., Andrew D. Moore, John A. Kirkegaard. 2014. Evolution in Crop–Livestock Integration Systems That Improve Farm Productivity and Environmental Performance in Australia. European Journal of Agronomy 57(July), 10–20. https://doi.org/10.1016/j.eja.2013.04.007.
  • 8. Bellabarba, Agnese, Camilla Fagorzi, George C. di Cenzo, Francesco Pini, Carlo Viti, Alice Checcucci. 2019. Deciphering the Symbiotic Plant Microbiome: Translating the Most Recent Discoveries on Rhizobia for the Improvement of Agricultural Practices in Metal-Contaminated and High Saline Lands. Agronomy 9(9), 529. https://doi.org/10.3390/agronomy9090529.
  • 9. Bera, Kuntal, Puspendu Dutta, and Sanjoy Sadhukhan. 2022. Plant Responses Under Abiotic Stress and Mitigation Options Towards Agricultural Sustainability. В. https://doi.org/10.1007/978-3-030-95365-2_1.
  • 10. Burkle, Laura A., R. Travis Belote. 2015. Soil Mutualists Modify Priority Effects on Plant Productivity, Diversity, and Composition. Applied Vegetation Science 18(2), 332–42. https://doi.org/10.1111/avsc.12149.
  • 11. Cassman, Noriko A., Marcio F. A. Leite, Yao Pan, Mattias De Hollander, Johannes A. Van Veen, Eiko E. Kuramae. 2016. Plant and Soil Fungal but Not Soil Bacterial Communities Are Linked in Long-Term Fertilized Grassland. Scientific Reports 6(1), 23680. https://doi.org/10.1038/srep23680.
  • 12. Castiglione, Adele M., Giuseppe Mannino, Valeria Contartese, Cinzia M. Bertea, Andrea Ertani. 2021. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. Plants 10(8), 1533. https://doi.org/10.3390/plants10081533.
  • 13. Conant, Richard T., Keith Paustian, Edward T. Elliott. 2001. Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecological Applications 11(2), 343–55. https://doi.org/10.1890/1051-0761(2001)011(0343:GMACIG)2.0.CO;2.
  • 14. Coolon, Joseph D., Kenneth L. Jones, Timothy C. Todd, John M. Blair, Michael A. Herman. 2013. Long-Term Nitrogen Amendment Alters the Diversity and Assemblage of Soil Bacterial Communities in Tallgrass Prairie. PLoS ONE 8(6), e67884. https://doi.org/10.1371/journal.pone.0067884.
  • 15. Corcoz, Larisa, Florin Păcurar, Victoria Pop-Moldovan, Ioana Vaida, Vlad Stoian, Roxana Vidican. 2021. Mycorrhizal Patterns in the Roots of Dominant Festuca Rubra in a High-Natural-Value Grassland. Plants 11(1), 112. https://doi.org/10.3390/plants11010112.
  • 16. Das, Suvendu, Seung Tak Jeong, Subhasis Das, Pil Joo Kim. 2017. Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy. Frontiers in Microbiology 8. https://www.frontiersin.org/articles/10.3389/fmicb.2017.01702.
  • 17. Dmytrash-Vatseba, I. I., N.V. Shumska. 2020. Dynamics of Plant Cover of Meadow Steppes after the Cessation of Traditional Management in Opillia. Biosystems Diversity 28(3), 224–29. https://doi.org/10.15421/012029.
  • 18. Edesi, Liina, Tiina Talve, Elina Akk, Taavi Võsa, Triin Saue, Valli Loide, Raivo Vettik, Tiit Plakk, Kalvi Tamm. 2020. Effects of Acidified Pig Slurry Application on Soil Chemical and Microbiological Properties under Field Trial Conditions. Soil and Tillage Research 202(August), 104650. https://doi.org/10.1016/j.still.2020.104650.
  • 19. Eze, Samuel, Sheila M. Palmer, Pippa J. Chapman. 2018. Soil Organic Carbon Stock in Grasslands: Effects of Inorganic Fertilizers, Liming and Grazing in Different Climate Settings. Journal of Environmental Management 223(October), 74–84. https://doi.org/10.1016/j.jenvman.2018.06.013.
  • 20. Fangueiro, David, José Pereira, André Bichana, Sónia Surgy, Fernanda Cabral, João Coutinho. 2015. Effects of Cattle-Slurry Treatment by Acidification and Separation on Nitrogen Dynamics and Global Warming Potential after Surface Application to an Acidic Soil. Journal of Environmental Management 162(October), 1–8. https://doi.org/10.1016/j.jenvman.2015.07.032.
  • 21. Fangueiro, David, Henrique Ribeiro, Ernesto Vasconcelos, João Coutinho, Fernanda Cabral. 2009. Treatment by Acidification Followed by Solid–Liquid Separation Affects Slurry and Slurry Fractions Composition and Their Potential of N Mineralization. Bioresource Technology 100(20), 4914–17. https://doi.org/10.1016/j.biortech.2009.04.032.
  • 22. Fangueiro, David, Sonia Surgy, Irene Fraga, Fernando Girão Monteiro, Fernanda Cabral, João Coutinho. 2016. Acidification of Animal Slurry Affects the Nitrogen Dynamics after Soil Application. Geoderma 281(November), 30–38. https://doi.org/10.1016/j.geoderma.2016.06.036.
  • 23. Hamid, Basharat, Muzafar Zaman, Shabeena Farooq, Sabah Fatima, Riyaz Sayyed, Zahoor Baba, Tahir Sheikh. 2021. Bacterial Plant Biostimulants: A Sustainable Way Towards Improving Growth, Productivity, and Health of Crops. https://doi.org/10.20944/preprints202103.0085.v1.
  • 24. Hayes, R.C., Li G.D., Norton M.R., Culvenor R.A. 2018. Effects of Contrasting Seasonal Growth Patterns on Composition and Persistence of Mixed Grass-Legume Pastures over 5 Years in a Semi- Arid Australian Cropping Environment. Journal of Agronomy and Crop Science 204(3), 228–42. https://doi.org/10.1111/jac.12258.
  • 25. Hayes, R.C., Vadakattu V. S. R. Gupta, Guangdi D. Li, Mark B. Peoples, Richard P. Rawnsley, Keith G. Pembleton. 2021. Contrasting Soil Microbial Abundance and Diversity on and between Pasture Drill Rows in the Third Growing Season after Sowing. Renewable Agriculture and Food Systems 36(2), 163–72. https://doi.org/10.1017/S1742170520000174.
  • 26. Heyburn, Jemma, Paul McKenzie, Michael J. Crawley, Dario A. Fornara. 2017. Effects of Grassland Management on Plant C:N:P Stoichiometry: Implications for Soil Element Cycling and Storage. Ecosphere 8(10), e01963. https://doi.org/10.1002/ecs2.1963.
  • 27. International State Standard SS 17.4.4.02-84. „Nature Protection. Soil. Methods of sampling and preparation of samples for chemical, bacteriological, helminthological analysis“. PARAGRAPH Information System. https://online.zakon.kz/Document/?doc_id=31493200.
  • 28. Kaur, Harsimran, Harsh Garg. 2014. Pesticides: Environmental Impacts and Management Strategies. В. https://doi.org/10.5772/57399.
  • 29. Kuzyakov, Yakov, Xingliang Xu. 2013. Competition between Roots and Microorganisms for Nitrogen: Mechanisms and Ecological Relevance. New Phytologist 198(3), 656–69. https://doi.org/10.1111/nph.12235.
  • 30. Leff, Jonathan W., Stuart E. Jones, Suzanne M. Prober, Albert Barberán, Elizabeth T. Borer, Jennifer L. Firn, W. Stanley Harpole, and et al. 2015. Consistent Responses of Soil Microbial Communities to Elevated Nutrient Inputs in Grasslands across the Globe. Proceedings of the National Academy of Sciences 112(35), 10967–72. https://doi.org/10.1073/pnas.1508382112.
  • 31. Legay, Nicolas, Sandra Lavorel, Catherine Baxendale, Ute Krainer, Michael Bahn, Marie-Noëlle Binet, Amélie A. M. Cantarel, and et al. 2016. Influence of Plant Traits, Soil Microbial Properties, and Abiotic Parameters on Nitrogen Turnover of Grassland Ecosystems. Ecosphere 7(11), e01448. https://doi.org/10.1002/ecs2.1448.
  • 32. Li, Wenjing, Jinlong Wang, Lamei Jiang, Guanghui Lv, Dong Hu, Deyan Wu, Xiao-Dong Yang. 2023. Rhizosphere effect and water constraint jointly determined the roles of microorganism in soil phosphorus cycling in arid desert regions. CATENA 222(March), 106809. https://doi.org/10.1016/j.catena.2022.106809.
  • 33. Liu, Lan, Kai Zhu, Nina Wurzburger, Jian Zhang. 2020. Relationships between Plant Diversity and Soil Microbial Diversity Vary across Taxonomic Groups and Spatial Scales. Ecosphere 11(1). https://doi.org/10.1002/ecs2.2999.
  • 34. Luna, Rômulo Gil de, Henrique Douglas Melo Coutinho, Breno Machado Grisi. 2008. Evaluation of Pasture Soil Productivity in the Semi-Arid Zone of Brazil by Microbial Analyses. Brazilian Journal of Microbiology 39(3), 409–13. https://doi.org/10.1590/S1517-83822008000300001.
  • 35. Moon, Yong Sun, Sajid Ali. 2022. Possible Mechanisms for the Equilibrium of ACC and Role of ACC Deaminase-Producing Bacteria. Applied Microbiology and Biotechnology 106(3), 877–87. https://doi.org/10.1007/s00253-022-11772-x.
  • 36. Mpai, Tiisetso, Sanjay K. Jaiswal, Christopher N. Cupido, Felix D. Dakora. 2022. Seasonal Effect on Bacterial Communities Associated with the Rhizospheres of Polhillia, Wiborgia and Wiborgiella Species in the Cape Fynbos, South Africa. Microorganisms 10(10), 1992. https://doi.org/10.3390/microorganisms10101992.
  • 37. Nascimento, Francisco X., Bernard R. Glick, Márcio J. Rossi. 2019. Isolation and Characterization of Novel Soil- and Plant-Associated Bacteria with Multiple Phytohormone-Degrading Activities Using a Targeted Methodology. Access Microbiology 1(7), e000053. https://doi.org/10.1099/acmi.0.000053.
  • 38. Nasiev, Beybit, Nurbolat Zhanatalapov, Ashat Bekkaliev, Aydyn Bekkalieva. 2021. Assessment of ways to use pastures in semi-desert zone of West Kazakhstan. Agrarian Bulletin of the 214(11), 20–26. https://doi.org/10.32417/1997-4868-2021-214-11-20-26.
  • 39. Netthisinghe, Annesly M., Hunter O. Galloway, Getahun E. Agga, Phillip A. Gunter, Karamat R. Sistani. 2023. Effects of Cropping Systems on Soil Physicochemical Properties and Abundances and Spatial Distributions of Nitrogen-Cycling Bacteria. Agronomy 13(6), 1461. https://doi.org/10.3390/agronomy13061461.
  • 40. Nusillard, William, Tessie Garinie, Yann Lelièvre, Jérôme Moreau, Denis Thiery, Géraldine Groussier, Jacques Frandon, Philippe Louâpre. 2023. Heavy metals used as fungicide may positively affect Trichogramma species used as biocontrol agents in IPM programs. Journal of Pest Science, April, 1–12. https://doi.org/10.1007/s10340-023-01624-6.
  • 41. Oelmann, Yvonne, Markus Lange, Sophia Leimer, Christiane Roscher, Felipe Aburto, Fabian Alt, Nina Bange, and et al. 2021. Above- and Belowground Biodiversity Jointly Tighten the P Cycle in Agricultural Grasslands. Nature Communications 12(1), 4431. https://doi.org/10.1038/s41467-021-24714-4.
  • 42. Okagu, Innocent, Emmanuel Okeke, Wisdom Ezeorba, J.C. Ndefo, Timothy Ezeorba. 2023. Overhauling the ecotoxicological impact of synthetic pesticides using plants’ natural products: a focus on Zanthoxylum metabolites. Environmental Science and Pollution Research 30(May), 1–25. https://doi.org/10.1007/s11356-023-27258-w.
  • 43. Orozco-Mosqueda, Ma Del Carmen, Gustavo Santoyo, Bernard R. Glick. 2023. Recent Advances in the Bacterial Phytohormone Modulation of Plant Growth. Plants (Basel, Switzerland) 12(3), 606. https://doi.org/10.3390/plants12030606.
  • 44. Parzhanov, Zhanibek, Zharylkasyn Kuzembayuly, Bakytzhan Azhibekov, Ollabergen Isaev. 2020. Productivity and fodder value of pasture feed in spring and summer seasons. Agricultural Journal 2(13), 24–32. https://doi.org/10.25930/2687-1246/004.2.13.2020.
  • 45. Pereira, José, David Fangueiro, David R. Chadwick, Tom H. Misselbrook, João Coutinho, Henrique Trindade. 2010. Effect of Cattle Slurry Pre-Treatment by Separation and Addition of Nitrification Inhibitors on Gaseous Emissions and N Dynamics: A Laboratory Study. Chemosphere 79(6), 620–27. https://doi.org/10.1016/j.chemosphere.2010.02.029.
  • 46. Reynolds, Heather L., Alissa Packer, James D. Bever, Keith Clay. 2003. Grassroots Ecology: Plant–Microbe–Soil Interactions as Drivers of Plant Community Structure and Dynamics. Ecology 84(9), 2281–91. https://doi.org/10.1890/02-0298.
  • 47. Seydoşoğlu, Seyithan, Kagan Kokten, Veysel Saruhan, Ugur Sevilmis. 2019. Status and health of some natural pastures in south east Anatolia region of Turkey 40(December), 181–87.
  • 48. Shahrajabian, M. Hesam, Spyridon Petropoulos, Wenli Sun. 2023. Survey of the Influences of Microbial Biostimulants on Horticultural Crops: Case Studies and Successful Paradigms. Horticulturae 9(February), 1–24. https://doi.org/10.3390/horticulturae9020193.
  • 49. Shi, Lina, Zhenrong Lin, Shiming Tang, Cuoji Peng, Zeying Yao, Qing Xiao, Huakun Zhou, Kesi Liu, Xinqing Shao. 2022. Interactive effects of warming and managements on carbon fluxes in grasslands: A global meta-analysis. Agriculture, Ecosystems & Environment 340(December), 108178. https://doi.org/10.1016/j.agee.2022.108178.
  • 50. Soong, Jennifer L., Lucia Fuchslueger, Sara Marañon-Jimenez, Margaret S. Torn, Ivan A. Janssens, Josep Penuelas, Andreas Richter. 2020. Microbial Carbon Limitation: The Need for Integrating Microorganisms into Our Understanding of Ecosystem Carbon Cycling. Global Change Biology 26(4), 1953–61. https://doi.org/10.1111/gcb.14962.
  • 51. Sun, Qi, Ruoyu Jia, Jiachen Qin, Yang Wang, Xiaoming Lu, Peizhi Yang, Yongfei Bai. 2023. Grassland Management Regimes Regulate Soil Phosphorus Fractions and Conversion between Phosphorus Pools in Semiarid Steppe Ecosystems. Biogeochemistry, January. https://doi.org/10.1007/s10533-023-01019-w.
  • 52. Sun, Ruibo, Xue-Xian Zhang, Xisheng Guo, Daozhong Wang, Haiyan Chu. 2015. Bacterial Diversity in Soils Subjected to Long-Term Chemical Fertilization Can Be More Stably Maintained with the Addition of Livestock Manure than Wheat Straw. Soil Biology and Biochemistry 88(September), 9–18. https://doi.org/10.1016/j.soilbio.2015.05.007.
  • 53. Damodaran T., Sunil Jha, Sangeeta Kumari, Garima Gupta, Vinay Mishra, Parbodh Sharma, Ram Gopal, Arjun Singh, H.S Jat. 2023. Development of Halotolerant Microbial Consortia for Salt Stress Mitigation and Sustainable Tomato Production in Sodic Soils: An Enzyme Mechanism Approach. Sustainability 15(March), 5186. https://doi.org/10.3390/su15065186.
  • 54. Tedersoo, Leho, Mohammad Bahram, Sergei Põlme, Urmas Kõljalg, Nourou S. Yorou, Ravi Wijesundera, Luis Villarreal Ruiz, and et al. 2014. Fungal Biogeography. Global Diversity and Geography of Soil Fungi. Science (New York, N.Y.) 346(6213), 1256688. https://doi.org/10.1126/science.1256688.
  • 55. Tiquia, S.M, Tam N.F.Y. 2000. Fate of Nitrogen during Composting of Chicken Litter. Environmental Pollution 110(3), 535–541. https://doi.org/10.1016/S0269-7491(99)00319-X.
  • 56. Turner, Thomas R., Euan K. James, and Philip S. Poole. 2013. The plant microbiome. Genome Biology 14(6), 209. https://doi.org/10.1186/gb-2013-14-6-209.
  • 57. Van Der Heijden, Marcel G. A., Richard D. Bardgett, Nico M. Van Straalen. 2008. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecology Letters 11(3), 296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x.
  • 58. Van Der Heijden, Marcel G.A., Roy Bakker, Joost Verwaal, Tanja R. Scheublin, Matthy Rutten, Richard Van Logtestijn, Christian Staehelin. 2006. Symbiotic Bacteria as a Determinant of Plant Community Structure and Plant Productivity in Dune Grassland: Symbiotic Bacteria in Dune Grassland. FEMS Microbiology Ecology 56(2), 178–87. https://doi.org/10.1111/j.1574-6941.2006.00086.x.
  • 59. Vandenkoornhuyse, P., Quaiser A., Duhamel M., Le Van A., Dufresne A.. 2015. The Importance of the Microbiome of the Plant Holobiont. New Phytologist 206(4), 1196–1206. https://doi.org/10.1111/nph.13312.
  • 60. Sorin V., Vidican R., Gâdea S., Horvat M., Vâtcă A., Ancuța Stoian V., Stoian V.. 2020. Blackcurrant Variety Specific Growth and Yield Formation as a Response to Foliar Fertilizers. Agronomy 10(12), 2014. https://doi.org/10.3390/agronomy10122014.
  • 61. Vlajkov V., Pajčin I., Vučetić S., Anđelić S., Loc M., Grahovac M., Grahovac J. 2023. Bacillus-Loaded Biochar as Soil Amendment for Improved Germination of Maize Seeds. Plants 12(February), 1024. https://doi.org/10.3390/plants12051024.
  • 62. Wakelin, S.A., Gregg A.L., Simpson R.J., Li G.D., Riley I.T., C. McKay A. 2009. Pasture Management Clearly Affects Soil Microbial Community Structure and N-Cycling Bacteria. Pedobiologia 52(4), 237–251. https://doi.org/10.1016/j.pedobi.2008.10.001.
  • 63. Wang L., Wang Y., Xiu W., Tan B., Li G., Zhao J., Yang D., Zhang G., Zhang Y. 2022. Responses of Soil Microbial and Nematode Communities to Various Cover Crop Patterns in a Tea Garden of China. International Journal of Environmental Research and Public Health 19(5), 2695. https://doi.org/10.3390/ijerph19052695.
  • 64. Wierzchowski, P.S., Dobrzyński J., Mazur K., Kierończyk M., Wardal W.J., Sakowski T., Barszczewski J.. 2021. Chemical Properties and Bacterial Community Reaction to Acidified Cattle Slurry Fertilization in Soil from Maize Cultivation. Agronomy 11(3), 601. https://doi.org/10.3390/agronomy11030601.
  • 65. Yuan K., Xu H., Zhang G., Yan J. 2022. Aridity and High Salinity, Rather Than Soil Nutrients, Regulate Nitrogen and Phosphorus Stoichiometry in Desert Plants from the Individual to the Community Level. Forests 13(6), 890. https://doi.org/10.3390/f13060890.
  • 66. Caio Fernandes Z., Abdalla M., Abbott G.D., Taylor J.A., Valadares Galdos M., Julia Mary Cooper J.M., Lopez-Capel E.. 2023. Predicting Long-Term Effects of Alternative Management Practices in Conventional and Organic Agricultural Systems on Soil Carbon Stocks Using the DayCent Model. Agronomy 13(4), 1093. https://doi.org/10.3390/agronomy13041093.
  • 67. Ximei Z., Johnston E.R., Barberán A., Ren Y., Lü X., Han X.. 2017. Decreased Plant Productivity Resulting from Plant Group Removal Experiment Constrains Soil Microbial Functional Diversity. Global Change Biology 23(10), 4318–32. https://doi.org/10.1111/gcb.13783.
  • 68. Zhou, Jie, Zhipeng Li, Lingling Shi, Johanna Pausch. 2022. Microbial utilization of photosynthesized carbon depends on land-use. Geoderma 428(December), 116160. https://doi.org/10.1016/j.geoderma.2022.116160.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-750ec5b9-a772-4595-b2a1-59f9d31c943d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.