Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 26 | 223--226
Tytuł artykułu

Endoscopy image retrieval by Mixer Multi-Layer Perceptron

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
In Computer Vision, the Image Retrieval task is one of the interests of researchers, particularly medical image retrieval and endoscopy images. With the development of the Convolution Neural Network and Vision Transformer Technique, there are many proposals for using these techniques to make Image Retrieval Task and achieve a competitive result. In this paper, we propose a method that using Mixer Multi-Layer Perceptron architecture (Mixer-MLP) to build an Image Retrieval System with Medical images, particularly Endoscopic Images. This System base on the Classification process of Mixer-MLP architecture to generate vector representation for similarity cal- culation. The research result achieves competitively with efficient training time.
Wydawca

Rocznik
Tom
Strony
223--226
Opis fizyczny
Bibliogr. 18 poz., il.
Twórcy
Bibliografia
  • 1. Fan Yang, Ryota Hinami, Yusuke Matsui, Steven Ly, Shin’ichi Satoh, Efficient Image Retrieval via Decoupling Diffusion into Online and Offline Processing.
  • 2. Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy, Mixer-MLP: An all-MLP architecture for Vision.
  • 3. Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Eskeland, Thomas de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Peter Thelin Schmidt, Michael Riegler, Pål Halvorsen, Kvasir: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection, In MMSys’17 Proceedings of the 8th ACM on Multimedia Systems Conference (MM-SYS), Pages 164-169 Taipei, Taiwan, June 20-23, 2017.
  • 4. Filip Radenovic Giorgos Tolias Ond ́ ˇrej Chum, Fine-tuning CNN Image Retrieval with No Human Annotation
  • 5. Jinyun Lu , Image Retrieval Based on ResNet and KSH,Advances in Intelligent Systems Research, volume 147.
  • 6. Huiyi Hu, Wenfang Zheng, Xu Zhang, Xinsen Zhang, Jiquan Liu, Weiling Hu, Huilong Duan, Jianmin Si, Content-based gastric image retrieval using convolutional neural networks, Imaging Systems and Technology, pages 439-449.
  • 7. Sun Q, Yang Y, Sun J, Yang Z, Zhang J, eds. Using deep learning for content-based medical image retrieval. Paper presented at: Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications; 2017: International Society for Optics and Photonics.
  • 8. JC Felipe, AJ Traina, C Traina, eds. Retrieval by content of medical images using texture for tissue identification. Paper presented at: 16th IEEE Symposium Computer-Based Medical Systems, 2003 Proceedings; 2003: IEEE.
  • 9. A Rashno, S Sadri, eds. Content-based image retrieval with color and texture features in neutrosophic domain. Paper presented at: 2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA); 2017 19-20 2017.
  • 10. Cai Y, Li Y, Qiu C, Ma J, Gao X. Medical image retrieval based on convolutional neural network and supervised hashing. IEEE Access. 2019; 7: 51877- 51885.
  • 11. Hasan MM, Islam N, Rahman MM. Gastrointestinal polyp detection through a fusion of contourlet transform and neural features. J King Saud Univ-Comput Info Sci. 2020.
  • 12. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale information network embedding,” in Proceedings of the 24th International Conference on World Wide Web. ACM, 2015, pp. 1067-1077.
  • 13. F Sommen, S Zinger, EJ Schoon, eds. Computer-Aided Detection of Early Cancer in the Esophagus Using HD Endoscopy Images. Medical Imaging 2013: Computer-Aided Diagnosis. Vol. 8670. Florida: International Society for Optics and Photonics; 2013.
  • 14. Yu D, Seltzer ML, Li J, Huang J-T, Seide F. Feature learning in deep neural networks-studies on speech recognition tasks. arXiv. 2013;13013605.
  • 15. Nini Rao, Hongxiu Jiang, Chengsi Luo: Review on the Applications of Deep Learning in the Analysis of Gastrointestinal Endoscopy Images., Article in IEEE Access - September 2019
  • 16. Chung Y-A, Weng W-H. Learning deep representations of medical images using siamese cnns with application to content-based image retrieval. arXiv. 2017;171108490.
  • 17. Antoine Miech, Jean-Baptiste Alayrac, Ivan Laptev, Josef Sivic, Andrew Zisserman, Thinking Fast and Slow: Efficient Text-to-Visual Retrieval With Transformers, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 9826-9836
  • 18. JohnA.HForrestN.D.CFinlaysonD.J.CShearman, ENDOSCOPY IN GASTROINTESTINAL BLEEDING, the Lancet, Volume 304, Issue 7877, 17 August 1974, Pages 394-397.
Uwagi
1. This research is supported by research funding from Faculty of Information Technology, University of Science, Vietnam National University - Ho Chi Minh City
2. Track 5: Young Researchers Workshop on Artificial Intelligence and Cybersecurity
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-750bac6c-d29c-4274-9ed0-8d6e38d2b9f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.