Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 14 | 35--38
Tytuł artykułu

Detection of Malicious Executables Using Rule Based Classification Algorithms

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
International Conference on Information Technology and Knowledge Management (1 ; 22-23.12.2017 ; New Delhi, India)
Języki publikacji
EN
Abstrakty
EN
Machine Learning class rule has varied packages together with classification, clustering, will understand association rules furthermore and is capable of the method an enormous set of the information set as measure supervised or unsupervised learning data. The paper deals with statistics mining sort set of rules on virus dataset created records from varied anti-virus logs. The work deals with classifications of malicious code per their impact on user's system \& distinguishes threats on the muse in their connected severity; these threads are therefore named as malicious possible from varied sources, on various running structures. During this paper, the generated output is that the listing of records summarizing however because it ought to be the classifier algorithms are ready to predict the authentic magnificence of the days at a lower place the chosen take a look at module. The operating model deals with predicting the outliers of the threat datasets and predicts the optimum results supported analysis victimization the chosen rule. The work illustrates implementation of the algorithms corresponding to half, JRIP and RIDOR in additional economical manner because it relies on virus-log datasets to come up with A level of accuracy to the classification results.
Wydawca

Rocznik
Tom
Strony
35--38
Opis fizyczny
Bibliogr. 17 poz., tab., wykr., il.
Twórcy
autor
autor
autor
autor
Bibliografia
  • 1. W. Nor Haizan W. Mohamed, Mohd Najib Mohd Salleh, Abdul Halim Omar “A Comparative Study of Reduced Error Pruning Method in Decision Tree Algorithms,2012 IEEE International Conference on Control System, Computing and Engineering”, 23–25 Nov. 2012, Penang, Malaysia.
  • 2. Quinlan R. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers; 1993.
  • 3. Thorsten Lehr, Jing Yuan, Dirk Zeumer, SupriyaJayadev, and Marylyn D RitchiRule based classifier for the analysis of gene-gene and gene-environment interactions in genetic association studies Published online 2011 Mar 1. http://dx.doi.org/10.1186/1756-0381-4-4
  • 4. Pinto C M A, Machado J A T. Fractional Dynamics of Computer Virus Propagation. Mathematical Problems in Engineering, 2014: 259-305.
  • 5. Ripple Down Rule learner (RIDOR) Classifier for IRIS Dataset V. Veeralakshmi et al. / International Journal of Computer Science Engineering (IJCSE) ISSN : 2319-7323 Vol. 4 No.03 May 2015
  • 6. Himadri Chauhan, Vipin Kumar, Sumit Pundir and Emmanuel S. Pilli 2013 International Symposium on Computational and Business Intelligence “A Comparative Study of Classification Techniques for Intrusion Detection”, department of Computer Science and Engineering Graphic Era University Dehradun India http://dx.doi.org/10.1109/ISCBI.2013.16
  • 7. Neeraj Bhargava, Sonia Dayma, Abhishek Kumar, Pramod Singh IEEE Sponsored 3rd International Conference on Electronics and Communication Systems (ICECS 2016) An Approach for Classification using Simple CART Algorithm in Weka, MDS University Ajmer India.
  • 8. George Cabau, Magda Buhu, CiprianOpris: “Malware Classification Using Filesystem Footprints” a Bitdefender Technical University of Cluj-Napoca
  • 9. Hengli Zhao, Ming Xu, Ning Zhong, Jingjing Yao, and Q. Ho, "Malicious Executables Classification
  • 10. Based on Behavioral Factor Analysis," presented at the 2010 International Conference on e-Education, e-Business, e-Management and e-Learning, Sanya, China, 2010
  • 11. “Malware Behavioral Analysis System:” TWMAN
  • 12. F. Cohen, “Computational aspects of computer viruses” Computers & Security, vol. 8, no. 4, pp. 297–298, 1989.
  • 13. J. Stewart, "Behavioural malware analysis using Sandnets," Computer Fraud & Security, vol. 2006, no.Issue, pp. 4-6, December 2006.
  • 14. Microsoft, “File system minifilter drivers,” 2016. Available: https://msdn.microsoft.com/enus/library/windows/hardware/ff540402 (v=vs.85).aspx
  • 15. Hi-Juan Jia, Yan-yan Yang, Na Guo Zhengzhou: “Research on Computer Virus Source Modeling with Immune Characteristic” Normal University, Zhengzhou Henan 450044
  • 16. Muroya Y, Enatsu Y, Li H. Global stability of a delayed IRS computer virus propagation model. International Journal of Computer Mathematics, 2014, 91(3):347-367.
  • 17. C. Developers, “Cuckoo sandbox - open source automated malwareanalysis,” 2016. [Online]. Available: https://media.blackhat.com/us-13/US-13-Bremer-Mo-Malware-Mo-Problems-Cuckoo-Sandbox-WP.pdf
Uwagi
1. Preface
2. Technical Session: First International Conference on Information Technology and Knowledge Management
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-74eb1a54-f8a4-4698-bfa2-cce678c9d3ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.