Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 91, nr 1 | 18--26
Tytuł artykułu

Electrospinning of PAN and composite PAN-GO nanofibres

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study was to present the influence of used reinforcement phase – graphene oxide (GO) and the electrospinning process parameters (the distance between the nozzle and collector) on the morphology and the structure of the obtained composite PAN-GO nanofibres. Design/methodology/approach: To produce pure polymer nanofibers, a 10% (wt.) electrospinning solution the polyacrylonitrile (PAN) was dissolved in N, N-dimethylformamide (DMF). The spinning solution used for electrospinning PAN-GO composite fibres was made by dissolving the PAN in a mixture of GO and DMF. By changing the configuration of the distance between the nozzle and collector (10 and 20 cm) and maintaining the remaining parameters (solution flow rate and potential difference between the electrodes), four samples in the form of nanofibrous mats were made. In order to identify the structure and morphology of the reinforcing phase, X-ray microanalysis (EDX) and scanning electron microscopy (SEM) were performed. In addition, the structure of graphene oxide microparticles was investigated by a Raman spectrometer. In order to determine the influence of the distance between the nozzle and the collector used in the electrospinning process and the addition of the reinforcing phase to the morphology and structure of the obtained PAN polymer nanofibres and PAN-GO composite nanofibres, they were examined using SEM. The analysis of the chemical composition of PAN and PAN-GO fibres was carried out using X-ray microanalysis. Findings: The morphology and structure analysis indicated that polymer nanofibres PAN for both the distances between the nozzle and the collector show no structural defects and presented same diameter over the entire length of the fibre. Nanofibres with the addition of GO obtained at both distances between the electrodes, showed defects in the form of beads. In addition, it was observed that with increasing distance between the nozzle and collector the diameter of obtained nanofibres is smaller for both pure PAN and composite PAN-GO samples. Research limitations/implications: The paper is the basis for further research in the field of the use of PAN-GO composite nanofibres as water purification materials. Originality/value: The electrospinning method can be an alternative to conventional methods for the production of filtering membranes due to the ease of carrying out the process and the fact that a material with a high specific surface area is obtained.
Wydawca

Rocznik
Strony
18--26
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland , wiktor.matysiak@polsl.pl
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification: status and future, Angewandte Chemie International Edition 53 (2015) 3368-3386, DOI: 10.1002/anie.201409783.
  • [2] B.S. Lailia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: structure, properties and performance relationship, Desalination 326 (2013) 77-95, DOI: https://doi.org/10.1016/j.desal.2013.06.016.
  • [3] S. Agarwal, A. Greiner, J.H. Wendorff, Functional materials by electrospinning of polymers, Progress in Polymeric Science 38/6 (2013) 963-991, DOI: https://doi.org/10.1016/j.progpolymsci.2013.02.001.
  • [4] Y. Laio, C.H. Loh, M. Tian, R. Wang, A.G. Fane, Progress in electrospun polymetric nanofibrous membranes for water treatment: Fabrication, modification and applications, Progress in Polymeric Science 77(2018) 69-94, DOI: https://doi.org/10.1016/j.progpolymsci.2017.10.003.
  • [5] S. Patel, G. Hota, Synthesis of novel surface functionalized electrospun PAN nanofibers matrix for efficient adsorption of anionic CR dye from water, Journal of Environmental Chemical Engineering 6/4 (2018) 5301-5310, DOI: https://doi.org/10.1016/j.jece.2018.08.013.
  • [6] S. Patel, G. Hota, Adsorptive removal of malachite green dye by functionalized electrospun PAN nanofibers membrane, Fibers and Polymers 15/11 (2014) 2272-2282, DOI: https://doi.org/10.1007/s12221-014-2272-7.
  • [7] Q. Wang, D. Gao, C. Gao, Q. Wei, Y. Cai, J. Xu, X. Liu, Y. Xu, Removal of a cationic dye by adsorption/photodegradation using electrospun PAN / O-MMT composite nanofibrous membranes coated with TiO2, International Journal of Photoenergy 2012 (2012) Article ID 680419, DOI: http://dx.doi.org/10.1155/2012/680419.
  • [8] M. Avila, T. Burks, F. Akhtar, M. Göthelid, P.C. Lansåker, M.S. Toprak, M. Muhammed, A. Uheida, Surface functionalized nanofibers for the removal of chromium (VI) from aqueous solutions, Chemical Engineering Journal 245 (2014) 201-209, DOI: https://doi.org/10.1016/j.cej.2014.02.034.
  • [9] G. R. Kiani, H. Sheikhloie, N. Arsalani, Heavy metal Ion removal from aqueous solutions by functionalized polyacrylonitrile, Desalination 269/1-3 (201) 266-270, DOI: https://doi.org/10.1016/j.desal.2010.11.012.
  • [10] A. Almasian, G.C. Fard, M.P. Gashti, M. Mirjalili, Z.M. Shourijeh, Surface modification of electrospun PAN nanofibers by amine compounds for adsorption of anionic dyes, Desalination and Water Treatment 57/22 (2016) 10333-10348, DOI: https://doi.org/10.1080/19443994.2015.1041161.
  • [11] X. Wang, J. Yu, G. Sun, B. Ding, Electrospun nanofibrous materials: a versatile medium for effective oil/water separation, Materials Today 19/7 (2016) 403-414, DOI: https://doi.org/10.1016/j.mattod.2015.11.010.
  • [12] T.F. Yeh, J. Cihlar, C.Y. Chang, C. Cheng, H. Teng, Roles of graphene oxide in photocatalytic water splitting, Materials Today 16/3 (2013) 78-87, DOI: https://doi.org/10.1016/j.mattod.2013.03.006.
  • [13] H. Katepalli, M. Bikshapathi, C.S. Sharmaa, N. Vermaa, A. Sharma, Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications, Chemical Engineering Journal 171/3 (2011) 1194-1200, DOI: https://doi.org/10.1016/j.cej.2011.05.025.
  • [14] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon 44/15 (2006) 3342-3347, DOI: https://doi.org/10.1016/j.carbon.2006.06.004.
  • [15] K. Jalaja, V.S. Sreehari, P.R. Anil Kumar, R.J. Nirmala, Graphene oxide decorated electronspun gelatin nanofibers: Fabrication, properties and application, Materials Science and Engineering: C 64 (2016) 11-19, DOI: https://doi.org/10.1016/j.msec.2016.03.036.
  • [16] A. Rosea, K.G. Prasada, T. Sakthivel, V. Gunasekaranc, T. Maiyalagand, T. Vijayakumar, Electrochemical analysis of Graphene Oxide/Polyaniline/Polyvinyl alcohol composite nanofibers for supercapacitor applications, Applied Surface Science 449 (2018) 551-557, DOI: https://doi.org/10.1016/j.apsusc.2018.02.224.
  • [17] F. Barzegar, A. Bello, M. Fabiane, S. Khamlich, D. Momodu, F. Taghizadeh, J. Dangbegnon, N. Manyala, Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning, Journal of Physics and Chemistry of Solids 77 (2015) 139-145, DOI: https://doi.org/10.1016/j.jpcs.2014.09.015.
  • [18] Q. Wang, Y. Du, Q. Feng, F. Huang,K. Lu, J. Liu, Q.Wei, Nanostructures and surface nanomechanical properties of polyacrylonitrile/grapheme oxide composite nanofibers by electrospinning. Journal of Applied Polymer Science 128/2 (2013) 1152-1157, DOI: https://doi.org/10.1002/app.38273.
  • [19] F. Tuz Johra, J.-W. Lee, W.-G. Jung, Facile and safe graphene preparation on solution based platform, Journal of Industrial and Engineering Chemistry 20/5 (2014) 2883-2887, DOI: https://doi.org/10.1016/j.jiec.2013.11.022.
  • [20] S. Perumbilavil, P. Sankar, T. Priya Rose, R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced grapheme oxide nanosheets in the 400-700 nm region, Applied Physics Letters 107 (2015) 051104, DOI: https://doi.org/10.1063/1.4928124.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-74bae63a-ce8c-4aa2-956c-293447cece8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.