Warianty tytułu
Języki publikacji
Abstrakty
In this paper, non-invasive method of recognition of finger skin was proposed. A plan of study of images of finger skin was proposed. Researches were carried out for three kinds of images: 60 h after injury, 160 h after injury, 450 h after injury. Proposed technique of recognition used methods of signal processing: extraction of magenta color, calculation of histogram, image filtration, calculation of perimeter, and K-NN classifier. A pattern creation process was conducted using 15 training images of finger skin. In the identification process 60 test images were used. The advantage of the presented method is analysis of the finger skin using a smartphone. The proposed approach will help to diagnose pathologies of human skin.
Czasopismo
Rocznik
Tom
Strony
95--101
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Automatics and Biomedical Engineering, Al. A. Mickiewicza 30, 30-059 Kraków, Poland, adglow@agh.edu.pl
autor
- AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Power Electronics and Energy Control Systems, Kraków, Poland, glowacz@agh.edu.pl
Bibliografia
- [1] Ferrarese FP, Menegaz G. Performance evaluation in medical image segmentation. Curr Med Imaging Rev 2013;9 (1):7–17.
- [2] Masood S, Sharif M, Masood A, Yasmin M, Raza M. A survey on medical image segmentation. Curr Med Imaging Rev 2015;11(1):3–14.
- [3] Perez AA, Gonzaga A, Alves JM. Segmentation and analysis of leg ulcers color image. International Workshop on Medical Imaging and Augmented Reality. 2001. pp. 262–6.
- [4] Reska D, Jurczuk K, Boldak C, Kretowski M. MESA: complete approach for design and evaluation of segmentation methods using real and simulated tomographic images. Biocybern Biomed Eng 2014;34(3):146–58. http://dx.doi.org/10.1016/j.bbe.2014.02.003.
- [5] Ogiela L, Tadeusiewicz R, Ogiela MR. Cognitive computing in intelligent medical pattern recognition systems. Intelligent control and automation. Lecture notes in control and information sciences, vol. 344. 2006; p. 851–6.
- [6] Khan ZF, Kannan A. Intelligent segmentation of medical images using fuzzy bitplane thresholding. Meas Sci Rev 2014;14(2):94–101. http://dx.doi.org/10.2478/msr-2014-0013.
- [7] Hachaj T, Ogiela MR. CAD system for automatic analysis of CT perfusion maps. Opto-Electron Rev 2011;19(1):95–103. http://dx.doi.org/10.2478/s11772-010-0071-2.
- [8] Hachaj T, Ogiela MR. Application of neural networks in detection of abnormal brain perfusion regions. Neurocomputing 2013;122:33–42. http://dx.doi.org/10.1016/j.neucom.2013.04.030.
- [9] Hachaj T. Pattern classification methods for analysis and visualization of brain perfusion CT maps. Computational intelligence paradigms in advanced pattern classification. Studies in computational intelligence, vol. 386. 2012; p. 145–70.
- [10] Smietanski J, Tadeusiewicz R, Luczynska E. Texture analysis in perfusion images of prostate cancer—a case study. Int J Appl Math Comput Sci 2010;20(1):149–56. http://dx.doi.org/10.2478/v10006-010-0011-9.
- [11] Koprowski R. Automatic analysis of the trunk thermal images from healthy subjects and patients with faulty posture. Comput Biol Med 2015;62:110–8. http://dx.doi.org/10.1016/j.compbiomed.2015.04.017.
- [12] Marzec M, Koprowski R, Wrobel Z. Methods of face localization in thermograms. Biocybern Biomed Eng 2015;35 (2):138–46. http://dx.doi.org/10.1016/j.bbe.2014.09.001.
- [13] Sourati J, Kose K, Rajadhyaksha M, Dy JG, Erdogmus D, Brooks DH. Automated localization of wrinkles and the dermo-epidermal junction in obliquely-oriented reflectance confocal microscopic images of human skin. Proceedings of SPIE, Photonic Therapeutics and Diagnostics IX; 2013. p. 8565. http://dx.doi.org/10.1117/12.2006489.
- [14] Medyukhina A, Popp J. Automated classification of healthy and keloidal collagen patterns based on processing of SHG images of human skin.Microscopy applied to biophotonics. Proceedings of the International School of Physics Enrico Fermi, vol. 181. 2014; p. 189–93. http://dx.doi.org/10.3254/978-1-61499-413-8-189.
- [15] Sadeghi M, Lee TK, McLean D, Lui H, Atkins MS. Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans Med Imaging 2013;32(5):849–61. http://dx.doi.org/10.1109/TMI.2013.2239307.
- [16] Ferris LK, Harkes JA, Gilbert B, Winger DG, Golubets K, Akilov O, et al. Computer-aided classification of melanocytic lesions using dermoscopic images. J Am Acad Dermatol 2015;73(5):769–76.
- [17] Maglogiannis I, Delibasis KK. Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy. Comput Methods Progr Biomed 2015;118 (2):124–33. http://dx.doi.org/10.1016/j.cmpb.2014.12.001.
- [18] Jaworek-Korjakowska J, Tadeusiewicz R. Determination of border irregularity in dermoscopic color images of pigmented skin lesions.36th Annual international conference of the IEEE engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society Conference Proceedings, 2014;p. 6459–62. http://dx.doi.org/10.1109/EMBC.2014.6945107.
- [19] Jukic A, Kopriva I, Cichocki A. Noninvasive diagnosis of melanoma with tensor decomposition-based feature extraction from clinical color image. Biomed Signal Process Control 2013;8(6):755–63. http://dx.doi.org/10.1016/j.bspc.2013.07.001.
- [20] Jaworek-Korjakowska J. Novel method for border irregularity assessment in dermoscopic color images. Comput Math Methods Med 2015. http://dx.doi.org/10.1155/2015/496202.
- [21] Schaefer G, Krawczyk B, Celebi ME, Iyatomi H. An ensemble classification approach for melanoma diagnosis. Memet Comput 2014;6(4):233–40. http://dx.doi.org/10.1007/s12293-014-0144-8.
- [22] Liu T, Xie JB, Yan W, Li PQ, Lu HZ. An algorithm for finger-vein segmentation based on modified repeated line tracking. Imaging Sci J 2013;61(6):491–502. http://dx.doi.org/10.1179/1743131X12Y.0000000013.
- [23] Yin DS, Zhang ZA, Zhang P. Reconstruction method of finger vein pattern based on point features. International Conference on Electrical and Electronic Engineering. 2014. pp. 377–81.
- [24] Shin KY, Park YH, Nguyen DT, Park KR. Finger-vein image enhancement using a fuzzy-based fusion method with Gabor and Retinex filtering. Sensors 2014;14(2):3095–129. http://dx.doi.org/10.3390/s140203095.
- [25] MathWorks. MATLAB; 2015, www.mathworks.com.
- [26] Augustyniak P, Smolen M, Mikrut Z, Kantoch E. Seamless tracing of human behavior using complementary wearable and house-embedded sensors. Sensors 2014;14(5):7831–56. http://dx.doi.org/10.3390/s140507831.
- [27] Glowacz A. Recognition of acoustic signals of synchronous motors with the use of MoFS and selected classifiers. Meas Sci Rev 2015;15(4):167–75. http://dx.doi.org/10.1515/msr-2015-0024.
- [28] Glowacz A, Glowacz A, Glowacz Z. Recognition of monochrome thermal images of synchronous motor with the application of skeletonization and classifier based on words. Arch Metall Mater 2015;60(1):27–32. http://dx.doi.org/10.1515/amm-2015-0004.
- [29] Glowacz A, Glowacz A, Glowacz Z. Recognition of monochrome thermal images of synchronous motor with the application of quadtree decomposition and backpropagation neural network. Eksploat Niezawodn Maint Reliab2014;16(1):92–6.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-74762e24-b3e3-40bb-aab4-938058a2e31d