Warianty tytułu
Języki publikacji
Abstrakty
Polymer nanocomposites based on segmented polyurethane and silver nanoparticles (AgNPs) were synthesized using different methods of nanoparticle introduction. The dependence of their structure, thermophysical and antimicrobial properties on the method of introducing AgNPs was studied. It was established that the method of introduction affects both the spatial distribution of the filler particles and the final properties of the material. The introduction of AgNPs by the ultrasonic dispersion method leads to inhibition of the growth of the crystalline phase, which is associated with the formation of aggregates from AgNPs of small size, which have a large polymer-filler interaction surface. It is shown that the introducing AgNPs from a colloidal solution leads to an increase in the degree of crystallinity of the polymer matrix, which is a consequence of the nucleation effect of nanosized silver particles on the formation of the crystalline phase. It was established that the method of introducing nanoparticles does not affect their final antimicrobial properties. Owing to their unique characteristics, synthesized nanocomposite films can be promising for use as antimicrobial coatings.
Czasopismo
Rocznik
Tom
Strony
145--152
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Petro Mohyla Black Sea National University, 10, 68 Desantnykiv St., Mykolaiv, Ukraine, 54003, ealysenkov@ukr.net
autor
- National Academy of Sciences of Ukraine, Institute of Macromolecular Chemistry, 48, Kharkivske Highway, Kyiv, Ukraine, 02160
Bibliografia
- [1] Hiremath A., Murthy A.A., Thipperudrappa S., Bharath K.N., Nanoparticles filled polymer nanocomposites: A technological review, Cogent Engineering 2021, 8, 1991229, DOI: 10.1080/23311916.2021.1991229.
- [2] Radhakrishnan S., Nagarajan S., Belaid H. et al., Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications, Materials Science and Engineering: C. 2021, 118, 111525, DOI: 10.1016/j.msec. 2020.111525.
- [3] Lysenkov E., Klymenko L., Determination of the effect of carbon nanotubes on the microstructure and functional properties of polycarbonate-based polymer nanocomposite materials, Eastern European Journal of Enterprise Technologies 2021, 4(12), 112, 53-60. DOI: 10.15587/1729- 4061.2021.239114.
- [4] Lan W., Li S., Shama S. et al., Investigation of ultrasonic treatment on physicochemical, structural and morphological properties of sodium alginate/AgNPs/Apple polyphenol films and its preservation effect on strawberry, Polymers 2020, 12, 2096, DOI: 10.3390/polym12092096.
- [5] Lysenkov Е.А., Lysenkova I.P., Influence of nanodiamonds on the structure and thermophysical properties of polyethylene glycol-based systems, Functional Materials 2020, 27(4), 774-780, DOI: 10.15407/fm27.04.774.
- [6] González E.A., Leiva N., Vejar N. et al., Sol-gel coatings doped with encapsulated silver nanoparticles: inhibition of biocorrosion on 2024-T3 aluminum alloy promoted by Pseudomonas aeruginosa, Journal of Materials Research and Technology 2019, 8(2), 1809-1818, DOI: 10.1016/j.jmrt. 2018.12.011.
- [7] Zhyltsova S.V., Leonova N.G., Lysenkov E.A., Klymenko L.P., Influence of 3-glycidoxypropyltriethoxysilane on the structural organization of epoxy-silica nanocomposites, Theor. Exp. Chem. 2021, 57, 154-161, DOI: 10.1007/ s11237-021-09685-3.
- [8] Demchenko V., Shtompel’ V., Riabov S., Lysenkov E., Constant electric and magnetic fields effect on the structuring and thermomechanical and thermophysical properties of nanocomposites formed from pectin-Cu2+-polyethyleneimine interpolyelectrolyte-metal complexes, Nanoscale Research Letters 2015, 10, 479, DOI: 10.1186/ s11671-015-1181-z.
- [9] Vukoje I.D. et al., Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization. Mater. Res. Bull. 2014, 49, 434-439, DOI: 10.1016/j. materresbull.2013.09.029.
- [10] Qiu H., Si Z., Luo Y. et al., The Mechanisms and the applications of antibacterial polymers in surface modification on medical devices, Front. Bioeng. Biotechnol. 2020, 8, 910, DOI: 10.3389/fbioe.2020.00910.
- [11] Ahmad S.A., Das S.S., Khatoon A. et al., Bactericidal activity of silver nanoparticles: A mechanistic review, Materials Science for Energy Technologies 2020, 3, 756-769, DOI: 10.1016/j.mset.2020.09.002.
- [12] Mansoor S., Zahoor I., Baba T.R. et al., Fabrication of silver nanoparticles against fungal pathogens, Front. Nanotechnol. 2021, 3, 679358. DOI: 10.3389/fnano.2021.679358.
- [13] Zhang S., Tang Y., Vlahovic B., A Review on preparation and applications of silver-containing nanofibers, Nanoscale Research Letters 2016, 11, 80. DOI: 10.1186/s11671-016-1286-z.
- [14] Lyutakov O., Kalachyova Y., Solovyev A. et al., One-step preparation of antimicrobial silver nanoparticles in polymer matrix, J. Nanopart. Res. 2015, 17, 120, DOI: 10.1007/s11051-015-2935-3.
- [15] Demchenko V., Riabov S., Iurzhenko M., Rybalchenko N., A novel method for the formation of silver-containing nanocomposites-thermochemical reduction of Ag+ ions in polymer films, [In:] Pogrebnjak A., Bondar O. (eds), Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019), Springer Proceedings in Physics, Springer, Singapore 2020, DOI: 10.1007/978-981- 15-1742-6_17.
- [16] Lysenkov E., Stryutsky O., Polovenko L., Nanomaterials: Applications and Properties (IEEE NAP 2022): Proc. of 12th International Conference Nanomaterials: Applications and Properties (11-16 September 2022, Krakow, Poland), DOI: 10.1109/NAP55339.2022.9934675.
- [17] Qu R.J. et al., Preparation and property of polyurethane/nanosilver complex fibers, Appl. Surf. Sci. 2014, 294, 81-88, DOI: 10.1016/j.apsusc.2013.11.116.
- [18] Demchenko V., Mamunya Y., Kobylinskyi S. et al., Structure-morphology-antimicrobial and antiviral activity relationship in silver-containing nanocomposites based on polylactide, Molecules 2022, 27, 3769, DOI: 10.3390/ molecules 27123769.
- [19] Rivas L., Sanchez-Cortes S., García-Ramos J.V. et al., Growth of Silver colloidal particles obtained by citrate reduction to increase the raman enhancement factor, Langmuir 2001, 17(3), 574-577, DOI: 10.1021/la001038s.
- [20] Shevchenko V.V., Stryutsky A.V., Klymenko N.S. et. al., Protic and aprotic anionic oligomeric ionic liquids, Polymer 2014, 55(16), 3349-3359, DOI: 10.1016/j.polymer. 2014.04.020.
- [21] Sun C.C., You A.H., Teo L.L., XRD measurement for particle size analysis of PMMA polymer electrolytes with SiO2 , International Journal of Technology 2022, 13(6), 1336-1343, DOI: 10.14716/ijtech.v13i6.5927.
- [22] Xie H., Wu L., Li B.-G. et al., Poly(ethylene 2,5-furandicarboxylate-mb-poly(tetramethylene glycol)) multiblock copolymers: From high tough thermoplastics to elastomers, Polymer 2018, 155, 89-98, DOI: 10.1016/j.polymer. 2018.09.033.
- [23] Korley L.T.J., Pate B.D., Thomas E.L., Hammond P.T., Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes, Polymer 2006, 47(9), 3073-3082, DOI: 10.1016/j.polymer.2006.02.093.
- [24] Luo K., Wang L., Chen X. et al., Biomimetic polyurethane 3D scaffolds based on polytetrahydrofuran glycol and polyethylene glycol for soft tissue engineering, Polymers 2020, 12, 2631. DOI: 10.3390/polym12112631.
- [25] Qin Z., Yunhui L, Kevin C.C., Surface biocompatible modification of polyurethane by entrapment of a macromolecular modifier, Colloids Surf. B Biointerfaces 2013, 102, 345-360. DOI: 10.1016/j.colsurfb.2012.07.037.
- [26] Meng Y., A Sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity, Nanomaterials 2015, 5, 1124-1135, DOI: 10.3390/nano5021124.
- [27] Wang Y., Lang X., Fan S. Accelerated nucleation of tetrahydrofuran (THF) hydrate in presence of ZIF-61, Journal of Natural Gas Chemistry 2012, 21(3), 299-301, DOI: 10.1016/S1003-9953(11)60367-8.
- [28] Mtimet I., Lecamp L., Kebir N. et al., Green synthesis process of a polyurethane-silver nanocomposite having biocide surfaces, Polymer Journal 2012, 44, 1230-1237, DOI: 10.1038/pj.2012.90.
- [29] Hung H.S., Hsu S.H., Biological performances of poly(ether)urethane-silver nanocomposites, Nanotechnology, 2007, 18, 475101-475110. DOI: 10.1088/0957- 4484/18/47/475101.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-745b691d-f35c-4c00-9f0c-4a9a8c7fc7b6