Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | 264--271
Tytuł artykułu

Experimental and Modelling Studies on Thermal Insulation and Sound Absorption Properties of Cross-Laid Nonwoven Fabrics

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nonwoven fabrics are widely used for thermal insulation and sound absorption purpose in construction and automobile fields. It is essential to investigate their thermal conductivity and sound absorption coefficient. Five cross-laid nonwoven fabrics are measured on the Alambeta device and Brüel & Kjær impedance tube. Bogaty and Bhattacharyya models are selected to predict the thermal conductivity, and Voronina and Miki models are used to predict the sound absorption coefficient. The predicted thermal conductivity shows a significant difference compared with the measured values. It is concluded that Bogaty and Bhattacharyya models are not suitable for high porous nonwoven fabric. In addition, the results of Voronina and Miki models for sound absorption prediction are acceptable, but Voronina model shows lower mean prediction error compared with Miki model. The results indicate that Voronina model can be used to predict the sound absorption of cross-laid nonwoven fabric.
Wydawca

Rocznik
Strony
264--271
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117 Liberec, Czech Republic, tao.yang@tul.cz
autor
  • Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, 330200, China
  • Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Liberec 46117, Czech Republic
  • Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117 Liberec, Czech Republic
  • Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Liberec 46117, Czech Republic
autor
  • Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Liberec 46117, Czech Republic
autor
  • Department of Vehicles and Engines, Faculty of Mechanical Engineering, Technical University of Liberec, Liberec 46117, Czech Republic
  • Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Liberec 46117, Czech Republic
Bibliografia
  • [1] Papadopoulos, A. M. (2005). State of the Art in Thermal Insulation Materials and Aims for Future Developments. Energy and Buildings, 37.(1.), 77–86.
  • [2] Patnaik, A., Mvubu, M., Muniyasamy, S., Botha, A., Anandjiwala, R. D. (2015). Thermal and Sound Insulation Materials from Waste Wool and Recycled Polyester Fibers and Their Biodegradation Studies. Energy and Buildings, 92., 161–169.
  • [3] Cox T. J., D’Antonio, P. (2009). Acoustic absorbers and diffusers: Theory, design and application (2 ed). Taylor & Francis (New York).
  • [4] Yang, T., Xiong, X., Mishra, R., Novák, J., Militký, J. (2018). Acoustic Evaluation of Struto Nonwovens and Their Relationship with Thermal Properties. Textile Research Journal 88.(4.), 426–37.
  • [5] Cerkez, I., Kocer, H. B., Broughton, R. M. (2018). Airlaid Nonwoven Panels for Use as Structural Thermal Insulation. Journal of the Textile Institute, 109.(1.), 17–23.
  • [6] Yang, T, Xiong, X., Mishra, R., Novák, J., Militký, J. (2019). Sound Absorption and Compression Properties of Perpendicular-Laid Nonwovens. Textile Research Journal, 89.(4.), 612–624.
  • [7] Martin, J. R., Lamb, G. E. R. (1987). Measurement of Thermal Conductivity of Nonwovens Using a Dynamic Method. Textile Research Journal, 57.(12.), 721–727.
  • [8] Küçük, M., Korkmaz, Y. (2012). The Effect of Physical Parameters on Sound Absorption Properties of Natural Fiber Mixed Nonwoven Composites. Textile Research Journal, 82.(20.), 2043–2053.
  • [9] Gibson, P., Lee, C. (2004). Application of Nanofiber Technology to Nonwoven Thermal Insulation. Proceedings of 14th Annual International TANDEC Nonwovens Conference, 2.(2.), 1–14.
  • [10] Lee, Y., Joo, C. (2003). Sound Absorption Properties of Recycled Polyester Fibrous Assembly Absorbers. Autex Research Journal, 3.(2.), 78–84.
  • [11] Manning, J., Panneton, R. (2013). Acoustical Model for Shoddy-Based Fiber Sound Absorbers. Textile Research Journal, 83.(13.), 1356–1370.
  • [12] Soltani, P., Azimian, M., Wiegmann, A., Zarrebini, M. (2018). Experimental and Computational Analysis of Sound Absorption Behavior in Needled Nonwovens. Journal of Sound and Vibration, 426., 1–18.
  • [13] Arambakam, R., Tafreshi, H. V., Pourdeyhimi, B. (2013). A Simple Simulation Method for Designing Fibrous Insulation Materials. Materials and Design, 44., 99–106.
  • [14] Maciel, N. de O. R., Ribeiro C. G. D., Ferreira, J., Vieira, J. da S., Marciano, C. R., Vieira, C. M., Margem, F. M., Monteiro, S. N. (2017). Comparative Analysis of Curaua Fiber Density Using the Geometric Characterization and Pycnometry Technique. In: Ikhmayies, S., Li, B., Carpenter, J. S., Li, J., Hwang, J.-Y., Monteiro, S.N., Firrao, D., Zhang, M., Peng, Z., Escobedo-Diaz, J.P., Bai, C., Kalay, Y.E., Goswami, R., Kim, J. (Eds.) Characterization of Minerals, Metals, and Materials. Cham: Springer International Publishing (Cham).
  • [15] ISO 9073-1:1989. Textiles -- Test methods for nonwovens -- Part 1: Determination of mass per unit area.
  • [16] ASTM C830-00: 2000. Standard test methods for apparent porosity, liquid absorption, apparent specific gravity, and bulk density of refractory shapes by vacuum pressure.
  • [17] Hes, L., de Araujo, M., Djulay, V.V. (1996). Effect of Mutual Bonding of Textile Layers on Thermal Insulation and Thermal Contact Properties of Fabric Assemblies. Textile Research Journal, 66., 245–250.
  • [18] ISO10534-2: 1998. Determination of sound absorption coefficient and impedance in impedance tubes, Part 2: Transfer-function method international organization for standardization.
  • [19] Yang, T., Saati, F., Horoshenkov, K. V., Xiong, X., Yang, K., Mishra, R., Marburg, S., Militký, J. (2019). Study on the Sound Absorption Behavior of Multi-Component Polyester Nonwovens: Experimental and Numerical Methods. Textile Research Journal 89.(16.), 3342–3361.
  • [20] Sun, Z. Pan, N. (2006) Thermal conduction and moisture diffusion in fibrous materials. In: Pan, N., Gibson, P. (Ed.). Thermal and moisture transport in fibrous materials, Woodhead Publishing Ltd (Cambridge).
  • [21] Arambakam, R., Tafreshi, H. V., Pourdeyhimi, B. (2014). Modeling performance of multi-component fibrous insulations against conductive and radiative heat transfer. International Journal of Heat and Mass Transfer 71., 341–348.
  • [22] Lawson, D. I., Mcguire, J. H. (1953). The Solution of Transient Heat-flow Problems by Analogous Electrical Networks. Proceedings of the Institution of Mechanical Engineers 167., 275–290.
  • [23] Fricke, H. I. J. (1924). A Mathematical Treatment of the Electrical conductivity and Capacity of Disperse Systems. Physical Review 24., 678–681.
  • [24] Bogaty, H., Hollies, N. R. S., Harris, M. (1957). Some Thermal Properties of Fabrics: Part I: The Effect of Fiber Arrangement. Textile Research Journal, 27., 445–449.
  • [25] Bhattacharyya, R. K. (1980). Heat Transfer Model for Fibrous Insulations. In: MeElroy, D. L., Tye, R. P. (Ed.). Thermal Insulation Performance, ASTM STP 718; American Society for Testing and Materials (West Conshohocken). pp. 272–286.
  • [26] Yang, T., Xiong, X., Petrů, M., Tan, X., Kaneko, H., Militký, J. (2020). Theoretical and Experimental Studies on Thermal Properties of Polyester Nonwoven Fibrous Material. Materials 13., 1–20.
  • [27] Baxter, S. (1946). The Thermal Conductivity of Textiles. Proceedings of the Physical Society 58., 105–118.
  • [28] Zwikker, C., Kosten, C. W. (1949). Sound Absorbing Materials. Elsevier (New York).
  • [29] Miki, Y. (1990). Acoustical properties of porous materials-Modification of Delany-Bazley models. Journal of Acoustic Society of Japan, 11.(1.),19–24.
  • [30] Delany, M. E., Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3.(2.), 105–116.
  • [31] Yang, T., Mishra, R., Horoshenkov, K. V., Hurrell, A., Saati, F., Xiong, X. (2018). A Study of Some Airflow Resistivity Models for Multi-Component Polyester Fiber Assembly. Applied Acoustics, 139., 75–81.
  • [32] Tarnow, V. (1996). Airflow Resistivity of Models of Fibrous Acoustic Materials. Journal of the Acoustical Society of America 100., 3706–3713.
  • [33] Voronina, N. (1994). Acoustic properties of fibrous materials. Applied Acoustics 42.(2.), 165–174.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7431b466-fb0e-4b26-8e4c-62fbf3521883
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.