Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 25, No. 2 | 99--103
Tytuł artykułu

Determination of thermal conductivity coefficient by Green-Kubo formula using the minimum image method

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal conductivity coefficients of solid argon have been evaluated by equilibrium molecular dynamic simulations. A Lennard-Jones interatomic potential has been used to model the interactions between argon atoms. In simulations and calculations of the thermal conductivity by the Green-Kubo formula, the long-range interactions between atoms have been taken into account using the minimum image method (MIM). The study shows that there are no significant differences between the values of the thermal conductivity obtained by method using MIM and those coming from traditional Green-Kubo approach. Both experimental data and results of molecular dynamics simulations are also in agreement with the Klemens-Callaway model for the thermal conductivity based on the three-phonon Umklapp scattering.
Wydawca

Rocznik
Strony
99--103
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • Institute of Molecular Physics Polish Academy of Sciences Smoluchowskiego 17/19 60-179 Poznań, Poland
  • Poznań University of Technology Jana Pawła II 24 60-965 Poznań, Poland
  • Institute of Molecular Physics Polish Academy of Sciences Smoluchowskiego 17/19 60-179 Poznań, Poland, tretiakov@ifmpan.poznan.pl
  • The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz Nowy Swiat 4, 62–800 Kalisz, Poland
Bibliografia
  • [1] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, J.W. Arrowsmith Ltd., Bristol, UK (1987).
  • [2] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, Academic, New York (2005).
  • [3] R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Japan 12, 570–586 (1957).
  • [4] R. Zwanzig, Time-Correlation Functions and Transport Coefficients in Statistical Mechanics, Annu. Rev. Phys. Chem. 16, 67–102 (1965).
  • [5] J.G. Kirkwood, The Statistical Mechanical Theory of Transport Processes I. General Theory, J. Chem. Phys. 14, 180 (1946).
  • [6] D.M. Heyes, Transport-Coefficients of Lennard-Jones Fluids: A Molecular-Dynamics and Effective Hard-Sphere Treatment, Phys. Rev. B 37, 5677 (1988).
  • [7] K.V. Tretiakov, K.W. Wojciechowski, Quick and accurate estimation of the elastic constants using the minimum image method, Comput. Phys. Commun. 189, 77–83 (2015).
  • [8] A.J.C. Ladd, Monte-Carlo simulation of water, Mol. Phys. 33(4), 1039–1050 (1977).
  • [9] A.J.C. Ladd, Long-range dipolar interactions in computer simulations of polar liquids, Mol. Phys. 36(2), 463–474 (1978).
  • [10] D.P. Sellan, E.S. Landry, J.E. Turney, A.J. McGaughey, C.H. Amon, Size effects in molecular dynamics thermal conductivity predictions, Phys. Rev. B 81, 214305 (2010).
  • [11] K. Hyzorek, K.V. Tretiakov, ˙ Thermal conductivity of liquid argon in nanochannels from molecular dynamics simulations, J. Chem. Phys. 144, 194507 (2016).
  • [12] K.V. Tretiakov, S. Scandolo, Thermal conductivity of solid argon for molecular dynamics simulations, J. Chem. Phys. 120(8), 3765–3769 (2004).
  • [13] I.N. Krupskii, V.G. Manzhelii, Multiphonon Interactions and the Thermal Conductivity of Crystalline Argon, Krypton, and Xenon, Sov. Phys. JETP 28, 1097 (1969).
  • [14] F. Clayton, D.N. Batchelder, Temperature and volume dependence of the thermal conductivity of solid argon, J. Phys. C: Solid State Phys. 6, 1213 (1973).
  • [15] D.K. Christen, G.L. Pollack, Thermal conductivity of solid argon, Phys. Rev. B 12, 3380 (1975).
  • [16] P.G. Klemens, [In:] Solid State Physics, edited by F. Seitz and D. Turnbull, Academic Press, New York, 1st Edition (1958).
  • [17] J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire, J. Appl. Phys. 89, 2932 (2001).
  • [18] P.G. Klemens, [In:] Chem. and Phys. of Nanostructures and Related Non-Equilibrium Materials, edited by E. Ma, B. Fultz, R. Shall, J. Morral, and P. Nash, Minerals, Metals, Materials Society, Warrendale, PA (1997).
  • [19] J.P. Poirier, Introduction to the Physics of Earth’s Interior, Cambridge University Press, Cambridge (1991).
  • [20] G.J. Keeler, D.N. Batchelder, Measurement of the elastic constants of argon from 3 to 77 K, J. Phys. C: Solid State Phys. 3, 510 (1970).
  • [21] A.M. Krivtsov, V.A. Kuzkin, Derivation of Equations of State for Ideal Crystals of Simple Structure, Mech. Sol. 46, 387 (2011).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-73e3e262-0c19-4d22-a676-7d8b85965209
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.