Czasopismo
2017
|
Vol. 23, No. 3
|
143--153
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We two had year-long research leaves in Japan, working together fulltime with several Japanese plus Tony De Groot back in Livermore and Harald Posch in Vienna. We summarize a few of the high spots from that very productive year (1989-1990), followed by an additional fifteen years’ work in Livermore, with extensive travel. Next came our retirement in Nevada in 2005, which has turned out to be a long-term working vacation. Carol narrates this part of our history together.
Słowa kluczowe
Rocznik
Tom
Strony
143--153
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Ruby Valley Research Institute Highway Contract 60, Box 601 Ruby Valley, Nevada 89833
autor
- Ruby Valley Research Institute Highway Contract 60, Box 601 Ruby Valley, Nevada 89833, hooverwilliam@yahoo.com
Bibliografia
- [1] W.G. Hoover, C.G. Hoover, and H.A. Posch, Lyapunov Instability of Pendula, Chains and Strings, Physical Review A 41, 2999-3004 (1990).
- [2] W.G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).
- [3] W.G. Hoover, A.J. De Groot, C.G. Hoover, I.F. Stowers, T. Kawai, B.L. Holian, T. Boku, S. Ihara, and J. Belak, Large-Scale Elastic-Plastic Indentation Simulations via Molecular Dynamics, Physical Review A 42, 5844-5853 (1990).
- [4] J.S. Kallman, W.G. Hoover, C.G. Hoover, A.J. De Groot, S. Lee, and F. Wooten, Molecular Dynamics of Silicon Indentation, Physical Review B 47, 7705-7709 (1993).
- [5] J.S. Kallman, A.J. De Groot, C.G. Hoover, W.G. Hoover, S.M. Lee, and F. Wooten, Visualization Techniques for Molecular Dynamics, IEEE Computer Graphics and Applications 15, 72-77 (November, 1995).
- [6] H.J.M. Hanley, Nonlinear Fluid Behavior, Proceedings of a 1982 Conference in Boulder, Colorado, published as Physica 118A, 1-454 (1983).
- [7] S. Nosé, A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Molecular Physics 52, 255-268 (1984).
- [8] S. Nosé, A Unified Formulation of the Constant Temperature Molecular Dynamics, The Journal of Chemical Physics 81, 511-519 (1984).
- [9] W.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Physical Review A 31, 1695-1697 (1985).
- [10] G. Ciccotti and W.G. Hoover, Molecular Dynamics Simulations of Statistical Mechanical Systems, Proceedings of the 1985 Enrico Fermi International School of Physics at Varenna (Elsevier, New York, 1986), 622 pages.
- [11] B.L. Holian, W.G. Hoover, and H.A. Posch, Second-Law Irreversibility of Reversible Mechanical Systems = Resolution of Loschmidt’s Paradox: the Origin of Irreversible Behavior in Reversible Atomistic Dynamics, Physical Review Letters 59, 10-13 (1987).
- [12] L.B. Lucy, A Numerical Approach to the Testing of the Fission Hypothesis, Astronomical Journal 82, 1013-1024 (1977).
- [13] J.J. Monaghan, Smoothed Particle Hydrodynamics, Annual Review of Astronomy and Astrophysics 30, 543-574 (1992).
- [14] Wm. G. Hoover and H.A. Posch, Entropy Increase in Confined Free Expansions via Molecular Dynamics and Smooth-Particle Applied Mechanics, Physical Review E 59, 1770-1776 (1999).
- [15] Wm. G. Hoover, H.A. Posch, V.M. Castillo, and C.G. Hoover, Computer Simulation of Irreversible Expansions via Molecular Dynamics, Smooth Particle Applied Mechanics, Eulerian, and Lagrangian Continuum Mechanics, Journal of Statistical Physics 100, 313-326 (2000).
- [16] O. Kum, W.G. Hoover, and H.A. Posch, Viscous Conducting Flows with Smooth-Particle Applied Mechanics, Physical Review E 52, 4899-4908 (1995).
- [17] V.M. Castillo, Wm. G. Hoover, and C.G. Hoover, Coexisting Attractors in Compressible Rayleigh-Bénard Flow, Physical Review E 55, 5546-5550 (1997).
- [18] V.M. Castillo and Wm. G. Hoover, Entropy Production and Lyapunov Instability at the Onset of Turbulent Convection, Physical Review E 58, 7350-7354 (1998).
- [19] W.G. Hoover and H.A. Posch, Direct Measurement of Equilibrium and Nonequilibrium Lyapunov Spectra, Physics Letters A 123, 227-230 (1987).
- [20] H.A. Posch andW.G. Hoover, Chaotic Dynamics in Dense Fluids, Liquids of Small Molecules, Proceedings of a Conference at Santa Trada, Calabria, Italy, presented on 22 September 1987 and available in the book of abstracts published by the European Physical Society.
- [21] P.K. Patra, J.C. Sprott, W.G. Hoover and C.G. Hoover, Deterministic Time-Reversible Thermostats: Chaos, Ergodicity, and the Zeroth Law of Thermodynamics, Molecular Physics 113, 2863-2872 (2015).
- [22] K. Aoki and D. Kusnezov, Bulk Properties of Anharmonic Chains in Strong Thermal Gradients: Nonequilibrium 4 Theory, Physics Letters A 265, 250-256 (2000).
- [23] K. Aoki and D. Kusnezov, Nonequilibrium Steady States and Transport in the Classical Lattice 4 Theory, Physics Letters B 477, 348-354 (2000).
- [24] H.A. Posch and W.G. Hoover, Large-System Phase-Space Dimensionality Loss in Stationary Heat Flows, Physica D 187, 281-293 (2004).
- [25] W.G. Hoover and C.G. Hoover, Simulation and Control of Chaotic Nonequilibrium Systems (World Scientific, Singapore, 2015).
- [26] W.G. Hoover, C.G. Hoover, and F.J. Uribe, Flexible Macroscopic Models for Dense-Fluid Shockwaves: Partitioning Heat and Work; Delaying Stress and Heat Flux; Two-Temperature Thermal Relaxation, Proceedings of the International Summer School Conference: Advanced Problems in Mechanics-2010 organized by the Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences in Mechanics and Engineering under the patronage of the Russian Academy of Sciences = arXiv 1005.1525 (2010).
- [27] F.J. Uribe, W.G. Hoover, C.G. Hoover, Maxwell and Cattaneo’s Time-Delay Ideas Applied to Shockwaves and the Rayleigh-Bénard Problem, Computational Methods in Science and Technology 19, 5-12 (2013).
- [28] Wm. G. Hoover and C.G. Hoover, Hamiltonian Dynamics of Thermostated Systems: Two-Temperature Heat-Conducting 4 Chains, Journal of Chemical Physics 126, 164113 (2007).
- [29] W.G. Hoover and C.G. Hoover, Hamiltonian Thermostats Fail to Promote Heat Flow, Communications in Nonlinear Science and Numerical Simulation 18, 3365-3372 (2013).
- [30] T. Leete, The Hamiltonian Dynamics of Constrained Lagrangian Systems (Master’s Thesis, West Virginia University, 1979).
- [31] K.P. Travis and C. Braga, Configurational Temperature Control for Atomic and Molecular Systems, The Journal of Chemical Physics 128, 014111 (2008) = arXiv 0709.1575.
- [32] R.E. Duff, W.H. Gust, E.B. Royce, M. Ross, A.C. Mitchell, R.N. Keeler, and W. G. Hoover, Shockwave Studies in Condensed Media, in Behavior of Dense Media Under High Dynamic Pressures (Gordon and Breach, New York, 1968).
- [33] V.Y. Klimenko and A.N. Dremin, Structure of Shockwave Front in a Liquid in Detonation, Chernogolovka, edited by O.N. Breusov et alii (Akademiya Nauk, Moscow, SSSR, 1978), pages 79-83.
- [34] B.L. Holian, W.G. Hoover, B. Moran, and G.K. Straub, Shockwave Structure via Nonequilibrium Molecular Dynamics and Navier-Stokes Continuum Mechanics, Physical Review A 22, 2798-2808 (1980).
- [35] P.K. Patra and B. Bhattacharya, A Deterministic Thermostat for Controlling Temperature Using All Degrees of Freedom, The Journal of Chemical Physics 140, 064106 (2014).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-73d24dcb-3770-43b3-8f90-805b26b8ceb1