Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
This article is devoted to the analysis of the heat engineering characteristics of the operation of an Earth-to-Air Heat Exchanger, EAHE, with a circular cross-sectional shape, which is a component of the geothermal ventilation system. The authors analyzed literature sources devoted to the research of heat exchangers of the soil-air type of various designs and for working conditions in various soils. Much attention is paid to the issues of modeling the operation of such heat exchangers and the distinctive features of each of these models. Also important are the results of experimental studies carried out on our own experimental bench and with the help of which the numerical model was validated. The results of these studies are the basis for the development of a method for determining the optimal diameter of an EAHE under operating conditions for soil in Kyiv, Ukraine.
Czasopismo
Rocznik
Tom
Strony
42--64
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Institute of Engineering Thermophysics, The National Academy of Sciences of Ukraine
autor
- Institute of Engineering Thermophysics, The National Academy of Sciences of Ukraine, bozhkoik@gmail.com
autor
- Institute of Engineering Thermophysics, The National Academy of Sciences of Ukraine
autor
- Institute of Engineering Thermophysics, The National Academy of Sciences of Ukraine
autor
- Institute of Engineering Thermophysics, The National Academy of Sciences of Ukraine
Bibliografia
- Agrawal, K., Misra, R., Bhardwaj, M., Das Agrawal, G., & Mathur, A. (2019). Computational Fluid Dynamics Simulation Based Comparison of Different Pipe Layouts in an EATHE System for Cooling Operation. ASME. J. Thermal Sci. Eng. Appl. DOI: https://doi.org/10.1115/1.4042856
- Amara, S., Nordell, B. & Benyoucef, B. (2011). Using Fouggara for heating and cooling buildings in Sahara. Energy Procedia, 6, 55-64.
- Ariffin, N., Sanusi, A. & Noor, A. (2014). Materials for the Earth Air Pipe Heat Exchanger (EAPHE) System as a Passive Cooling Technology for Hot-Humid Climate. Abstract of Emerging Trends in Scientific Research, 2, 1-19.
- Badescu, V. (2007). Simple and accurate model for the ground heat exchanger of a passive house. Renewable energy, 32(5), 845-855.
- Basok, B. & Novitska, М. (2017). Thermophysical modeling of an air-ground heat exchanger for a thermal curtain of front walls of an experimental energy-efficient building. Thermophysics and Thermal Power Engineering, 39(1), 49-52. DOI: 10.31472/ihe.1.2017.07
- Basok, B., Avramenko, A., Ryzhkov, S. & Lunina, A. (2009). The dynamics of heat transfer of liquid in a single rectilinear soil pipe element (heat exchanger). Industrial heating technology, 31(1), 62-67.
- Basok, B., Novitska, M., Bozhko, I., Priemchenko, V. & Tkachenko, M. (2020). Smart geothermal ventilation system. IEEE 7th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 226-229, DOI: 10.1109/ESS50319.2020. 9160244.
- Benkert, S., Heidt, F. & Scholer, D. (1997). September. Calculation tool for earth heat exchangers GAEA. In Proceeding of Building Simulation, Fifth International IBPSA Conference, Prague, 2, 9-16.
- Bonuso, S.; Panico, S.; Baglivo, C.; Mazzeo, D.; Matera, N.; Congedo, P.M.; Oliveti, G. (2020). Dynamic Analysis of the Natural and Mechanical Ventilation of a Solar Greenhouse by Coupling Controlled Mechanical Ventilation (CMV) with an Earth-to-Air Heat Exchanger (EAHX). Energies. DOI: https://doi.org/10.3390/ en13143676
- Cepiński, W., Kowalski, P., & Szałański, P. (2020). Waste Heat Recovery by Electric Heat Pump from Exhausted Ventilating Air for Domestic Hot Water in Multi- Family Residential Buildings. Rocznik Ochrona Środowiska, 22(2), 940-958.
- Congedo, P., Lorusso, C., Baglivo, C., Milanese, M. & Raimondo, L., (2019). Experimental validation of horizontal air-ground heat exchangers (HAGHE) for ventilation systems. Geothermics, 80, 78-85. DOI: 10.1016/j.geothermics.2019.02.010
- Díaz-Hernández, H., Macias-Melo, E., Aguilar-Castro, K., Hernández-Pérez, I., Xamán, J., Serrano-Arellano, J., López-Manrique, L. (2020). Experimental study of an earth to air heat exchanger (EAHE) for warm humid climatic conditions, Geothermics, 84, DOI: 10.1016/j.geothermics.2019.101741
- Dolna, O. & Mikielewicz, J. (2017). Studies on the Field Type Ground Heat Exchanger Coupled with the Compressor Heat Pump (Part 1). Rocznik Ochrona Środowiska, 19, 240-252.
- Dolna, O. & Mikielewicz, J. (2017). Studies on the Field Type Ground Heat Exchanger Coupled with the Compressor Heat Pump (Part 2). Rocznik Ochrona Środowiska, 19, 253-269.
- Filatov, S. & Volodin, V. (2013). Efficiency of using energy piles with air coolant in ventilation and heat supply systems. Industrial heating technology, 35(3), 44-50.
- Greco, A., Masselli, C. (2020). The Optimization of the Thermal Performances of an Earth to Air Heat Exchanger for an Air Conditioning System: A Numerical Study. Energies, 13. https://doi.org/10.3390/en13236414
- Hamdi, O., Brima, A., Moummi, N. & Nebbar, H. (2018). Experimental study of the performance of an earth to air heat exchanger located in arid zone during the summer period. Journal homepage: http://iieta.org/Journals/IJHT, 36(4), pp.1323-1329. DOI: 10.18280/ijht.360422
- Kamal Kumar Agrawal, Rohit Misra, Ghanshyam Das Agrawal, Mayank Bhardwaj & Doraj Kamal Jamuwa (2019). Effect of different design aspects of pipe for earth air tunnel heat exchanger system. International Journal of Green Energy, 16(8), 598-614, DOI: 10.1080/15435075.2019.1601096
- Krarti, M. & Kreider, J. (1996). Analytical model for heat transfer in an underground air tunnel. Energy conversion and management, 37(10), 1561-1574.
- Kumar Verma, M., Bansal, V., Bihari Rana. Development of passive energy source as earth air pipe heat exchangers (eaphe) system – a review. Journal of Thermal Engineering.
- Misra, R., Jakhar, S., Agrawal, K., Sharma, S., Jamuwa, D., Soni, M. & Agrawal, G. (2018). Field investigations to determine the thermal performance of earth air tunnel heat exchanger with dry and wet soil: Energy and exergetic analysis. Energy and Buildings, 171, 107-115. DOI:10.1016/j.enbuild.2018.04.026
- Nakorchevsky, A. & Belyaeva, T. (2005). Regression analysis of the depths of annual temperature fluctuations in the upper soil layers. Industrial heat engineering, 27(6), 86-90.
- Rouag, A., Benchabane, A. & Mehdid, C. (2018). Thermal design of Earth-to-Air Heat Exchanger. Part I a new transient semi-analytical model for determining soil temperature. Journal of Cleaner Production, 182, 538-544. DOI: 10.1016/j.jclepro.2018.02.089.
- Sakhri, N., Menni, Y., Chamkha, A.J., Salmi, M., Ameur, H. (2020). Earth to air heat exchanger and its applications in arid regions – an updated review. TECNICA ITALIANA-Italian Journal of Engineering Science, 64(1), 83-90. DOI:10.18280/tiijes.640113
- Sanusi, A. (2012). Low energy ground cooling system for buildings in hot and humid Malaysia. A thesis submitted for the degree of Doctor of Philosophy, De Montfort University, 271.
- Sehli, A., Hasni, A. and Tamali, M. (2012). The potential of earth-air heat exchangers for low energy cooling of buildings in South Algeria. Energy Procedia, 18, 496- 506.
- Serageldin, AA, Abdelrahman, AK, Ookawara, S. (2016). Earth-air heat exchanger thermal performance in egyptian conditions: experimental results, mathematical model, and computational fluid dynamics simulation. Energy Convers Manag, 122, 25-38. State Building Regulations of Ukraine B.2.5-67: 2013 "Heating, ventilation and air conditioning".
- Tkachenko, M., Goncharuk, S., Lysenko, O., Novitska, M., Nedbailo, O. (2020). Experimental validation of numerical simulation of air-earth heat exchanger with round cross section. In IV International Scientific-Technical Conference "Actual problems of renewable power engineering, construction and environmental engineering". 108-109.
- Tzaferis, A., Liparakis, D., Santamouris, M., Argiriou, A. (1992). Analysis of the accuracy and sensitivity of eight models to predict the performance of earth-to-air heat exchangers. Energy and buildings, 18(1), 35-43.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-73cff895-63eb-4cc6-8ab1-a2c7f69d7384