Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 24 | 87--92
Tytuł artykułu

Numerical methods for vibration analysis of Timoshenko beam subjected to inertial moving load

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Metody numeryczne analizy drgań belki Timoshenki pod inercyjnym obciążeniem ruchomym
Konferencja
Symposium “Vibrations In Physical Systems” (24 ; 11-15.05.2010 ; Będlewo koło Poznania ; Polska)
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problem of modeling of the moving mass particle in numerical computation by using the finite element method in one dimensional wave problems in which both the displacement and angle of the pure bending are described by linear shape functions. The analysis is based on the Timoshenko beam theory. We consider the simply supported beam, in a range of small deflections with zero initial conditions.
PL
Praca omawia problem modelowania numerycznego poruszającej się cząstki masowej metodą elementów skończonych w zadaniu jednowymiarowym. Przemieszczenia i obroty opisano liniowymi funkcjami kształtu. Analizę oparto na teorii belki Timoshenki.
Wydawca

Rocznik
Tom
Strony
87--92
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland, bdynie@ippt.gov.pl
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland, cbajer@ippt.gov.pl
Bibliografia
  • 1. L. Frỳba. Vibrations of solids and structures under moving loads. Thomas Telford House, 1999.
  • 2. W. Szcześniak. Inertial moving loads on beams (in Polish). Scientific Reports, Warsaw University of Technology, Civil Engineering 112, 1990.
  • 3. C.E. Smith. Motion of a stretched string carrying a moving mass particle. J. Appl. Mech., 31(1)(1964) 29-37.
  • 4. B. Dyniewicz and C.I. Bajer. Paradox of the particle’s trajectory moving on a string. Arch. Appl. Mech., 79(3)(2009) 213-223.
  • 5. E.C. Ting, J. Genin and J.H. Ginsberg. A general algorithm for moving mass problems. J. Sound Vib., 33(1)(1974) 49-58.
  • 6. G.T. Michaltsos. Dynamic behaviour of a single-span beam subjected to loads moving with variable speeds. J. Sound Vibr., 258(2)(2002) 359-372.
  • 7. A. Renaudot. Etude de l’influence des charges en mouvement sur la resistance, des ponts metallique a poutres droites. Annales des Ponts et Chausses, 1(1861) 45-204.
  • 8. C.I. Bajer and B. Dyniewicz. Numerical modelling of structure vibrations under inertial moving load. Arch. Appl. Mech., 79(6-7)(2009) 499-508.
  • 9. F.V. Filho. Finite element analysis of structures under moving loads. The Shock and Vibration Digest, 10(8)( 1978) 27-35.
  • 10. T. Borowicz. Strength of beams under moving load (in Polish). Archives of Civil Engineering, 24(2)(1978) 219-235.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-73b322b2-4c4b-4bf1-a854-535e5fc7923b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.