Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 41, No. 2 | 339--353
Tytuł artykułu

Antimicrobial activity, viability, and physicochemical properties of an MTA-type cement with different concentrations of bismuth trioxide

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In medicine, bismuth is used as an antimicrobial agent. In dentistry, it is used primarily to increase radiopacity in some endodontic materials. The objective is to evaluate the antimicrobial activity, cell viability, pH, solubility, film thickness, and setting time of a mineral trioxide aggregated (MTA)-types of cement with different concentrations of bismuth trioxide. Three experimental MTA-types of cement with a bismuth trioxide (Bi2O3) concentration of 15 wt%, 20 wt%, and 25 wt% were used. The antimicrobial activity test was conducted on Streptococcus mutans and Porphyromonas gingivalis strains. Cell viability was measured by the quantitative colorimetric assay using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assay on a mouse fibroblast cell line (L929). Solubility, film thickness, and setting time were performed according to ISO 6876. The lowest Bi2O3 concentrations showed the best antimicrobial activity and cell viability, pH, solubility, setting time, and film thickness did not show statistically significant differences between the different Bi2O3 concentrations tested.
Wydawca

Rocznik
Strony
339--353
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Biointerphases Laboratory, Postgraduate Studies, and Research Division. Faculty of Dentistry, National Autonomous University of México. Circuito exterior s/n, Ciudad Universitaria, CDMX, 04510, México
  • Dental Materials and Biomaterials Research Laboratory, Postgraduate Studies, and Research Division. Faculty of Dentistry, National Autonomous University of México, Circuito de la Investigación Científica. CDMX, 04510, México
  • Dental Materials and Biomaterials Research Laboratory, Postgraduate Studies, and Research Division. Faculty of Dentistry, National Autonomous University of México, Circuito de la Investigación Científica. CDMX, 04510, México
  • Departement of Health of the State of Guerrero, Chilpancingo de los Bravo, Guerrero, 39000, Guerrero, México
  • School of Dentistry Mexicali, Autonomous University of Baja California. Mexicali, Baja California 21040, México
  • Central Microscopy Laboratory, Institute of Physics, National Autonomous University of Mexico. Mexico City, México
  • Department of Integral Dental Clinics, University Center for Health Sciences. University of Guadalajara. Guadalajara, México
  • Dental Materials and Biomaterials Laboratory, Faculty of Stomatology, Meritorious Autonomous University of Puebla. 72410, Puebla, México, abigailt.flores@correo.buap.mx
Bibliografia
  • [1] Mathers CD, Stevens GA, Boerma T, et al. Causes of international increases in older age life expectancy. Lancet. 2015;385(9967):540–8. https://doi.org/10.1016/S0140-6736(14)60569-9
  • [2] Miyawaki S, Koyama I, Inoue M, et al. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Or-thod Dentofacial Orthop. 2003;124(4):373–8. https://doi.org/10.1016/S0889-5406(03)00565-1
  • [3] Santos-Junior A, De Castro Pinto L, Mateo-Castillo J, et al. Success or failure of endodontic treatments: a retrospective study. J Conserv Dent. 2019;22(2):129–32. https://doi.org/10.4103/JCD.JCD_507_18
  • [4] Prada I, Micó-Muñoz P, Giner-Lluesma T, et al. Influence of microbiology on endodontic failure. Literature review. Med Oral Pathol Oral Cir Bucal. 2019;24(3):e364–e72. https://doi.org/10.4317/MED0RAL.22907
  • [5] Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J Endod. 2010; 36(3): 400–413. https://doi.org/10. 1016/j.joen.2009.09.009
  • [6] Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater. 2015; 31(4): 351–70. https://doi.org/10.1016/j.dental.2015.01.004
  • [7] Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview – Part I: Vital pulp therapy. Int Endod J. 2018;51(2):177–205. https://doi.org/10.1111/iej.12841
  • [8] Flores-Ledesma A, Tejeda-Cruz A, Bucio L, et al. Hydration products and bioactivity of an experimental MTA-like cement modified with wollastonite and bioactive glass. Ceram Int. 2020;46(10):15963–71. https://doi.org/10.1016/j.ceramint.2020.03.146
  • [9] Paientko V, Oranska OI, Gun’ko VM, et al. Selected textural and electrochemical properties of nanocomposite fillers based on the mixture of rose clay/hydroxyapatite/nanosilica for cosmetic applications. Molecules. 2023;28:4820. https://doi.org/10.3390/molecules28124820.
  • [10] Torabinejad M, Hong C. Physical and chemical Pproperties of a new root-end filling material. J Endod. 1995;27(1):349–53.
  • [11] Rajasekharan S, Vercruysse C, Martens L, et al. Effect of exposed surface area, volume and environmental pH on the calcium ion release of three commercially available tricalcium silicate based dental cements. Materials. 2018;11(1):123. https://doi.org/10.3390/mallOlOl23
  • [12] Ruiz-Linares M, de Oliveira Fagundes J, Solana C, et al. Current status on antimicrobial activity of a tricalcium silicate cement. J Oral Sci. 2022;64(2):113–7. https://doi.org/10.2334/josnusd.21-0439
  • [13] Šimundić Munitić M, Poklepovic Pericic T, Utrobicic A, et al. Antimicrobial efficacy of commercially available endodontic bioceramic root canal sealers: A systematic review. PLoS One. 2019;14(10):e0223575. https://doi.org/10.1371/journal.pone.0223575
  • [14] Kim RJ-Y, Kim M-O, Lee K-S, et al. An in vitro evaluation of the antibacterial properties of three mineral trioxide aggregate (MTA) against five oral bacteria. Arch Oral Biol. 2015;60(10):1497-502. https://doi.org/10.1016/j.archoralbio.2015.07.014
  • [15] Qin F, Zhao H, Li G, et al. Size-tunable fabrication of multifunctional Bi2O3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis. Nanoscale. 2014;6(10):5402-09. https://doi.org/10.1039/c3nr06870f
  • [16] Cabral-Romero C, Hernandez-Delgadillo R, Velasco-Arias, et al. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomed. 2013;8:1645-52. https://doi.org/10.2147/1JN.S387O8
  • [17] Flores-Ledesma A, Gutiérrez-Estrada K, Bucio L. Estimation of the amount of bismuth trioxide as radiopacifying agent by a radiopacity test in two mineral trioxide aggregate cements. Rev Odonto Mex. 2019;23(3):139-48.
  • [18] Bueno CE d S, Zeferino EG, Manhaes JLRC, et al. Study of the bismuth oxide concentration required to provide Portland cement with adequate radiopacity for endodontic use. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(1):e65-e69. https://doi.org/10.1016/j.tripleo.2008.09.016
  • [19] Padrón-Alvarado K, García-Mendoza LA, Ramírez-Ortega JP, et al. Cell viability and physicochemical effects of different concentrations of bismuth trioxide in a mineral trioxide aggregate cement. J Oral Sci. 2023;65(1):10-14. https://doi.org/10.2334/josnusd.22-0139
  • [20] Campos V, Almaguer-Flores A, Velasco-Aria D, et al. Bismuth and silver nanoparticles as antimicrobial agent over subgingival bacterial and nosocomial strains. J Mater Sci Eng A. 2018;8(7-8):142-6. https://doi.org/10.17265/2161-6213/2018.7-8.002
  • [21] Flores-Ledesma A, Barcelo Santana F, Bucio L, et al. Elemental chemical composition and phase analysis by means of PIXE, DSC, TGA and XRD of MTA Angelus and white Portland cement. Rev Odonto Mex. 2016;20(3):187-92. https://doi.org/10.1016/j.rodmex.2016.08.015
  • [22] Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003;29(12):814-7. https://doi.org/10.1097/00004770-200312000-00007
  • [23] Kuehl RO. Diseño de experimentos: principios estadísticos para el diseño y análisis de investigaciones. 2nd edition. México, DF., 2001.
  • [24] Swartz JB, Dahlsten DL. Sampling techniques and the use of Tang’s procedure in insect population dynamics studies. Res Popul Ecol. 1980;21:300-7.
  • [25] International Standards Organization. ISO 11137-1. Sterilization of health care products—radiation— part 1: requirements for development, validation and routine control of a sterilization process for medical devices. Available from: https://www.iso.org/standard/33952.html
  • [26] Camilleri J, Arias Moliz T, Bettencourt A, et al. Standardization of antimicrobial testing of dental devices. Dent Mater 2020;36(3):e59-e73. https://doi.org/10.1016/j.dental.2019.12.006
  • [27] Kolliyavar B, Shettar L, Thakur S. Chlorhexidine: the gold standard mouth wash. J Pharm Biomed Sci. 2016;6(2):23-6.
  • [28] Kumar P, Nagarajan A, Uchil PD. Analysis of cell Vvia-bility by the MTT assay. Cold Spring Harb Protoc. 2018; 6. https://doi.org/10.H01/PDB.PR0T095505
  • [29] International Standards Organization. ISO 6876:2012. Dental root canal sealing materials. Geneva, Switzerland. London, Geneva, Switzerland, 2012. Available from:https ://www.iso.org/standard/45117.html
  • [30] Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J. 2007;40(6):462–70. https://doi.org/10.1111/j.1365-2591.2007.01248.x
  • [31] Hernández-Delgadillo R, Del Ángel-Mosqueda C, Solís-Soto JM, et al. Antimicrobial and antibiofilm activities of MTA supplemented with bismuth lipophilic nanoparticles. Dent Mater J. 2017;36(4):503–10. https://doi.org/10.4012/dmj.2016-259
  • [32] Bortoluzzi EA, Guerreiro-Tanomaru JM, Tanomaru-Filho M, et al. Radiographic effect of different radiopacifiers on a potential retrograde filling material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108(4):628–32. https ://doi. org/10.1016/j.tripleo.2009.04.044
  • [33] Vivan RR, Ordinola-Zapata R, Bramante CM, et al. Evaluation of the radiopacity of some commercial and experimental root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(6):e35-8. https://doi.org/10.1016/j.tripleo.2009.07.037
  • [34] Gross EL, Leys EJ, Gasparovich SR, et al. Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol. 2010;48(11):4121–8. https://doi.org/10.1128/JCM.01232-10
  • [35] Gomes B, Pinheiro E, Gadê-Neto C, et al. Microbiological examination of infected dental root canals. Oral Microbiol Immunol. 2004;19(2):71–6. https://doi. org/10.1046/J.0902-0055.2003.00116.X
  • [36] Cheng T, Lai Y-T, Wang C, et al. Bismuth drugs tackle Porphyromonas gingivalis and attune cytokine response in human cells. Metallomics. 2019;11(7):1207–18.https ://doi.org/10.1039/c9mtOOO85b
  • [37] Bland MV., Ismail S, Heinemann JA, et al. The action of bismuth against Helicobacter pylori mimics but is not caused by intracellular iron deprivation. Antimicrob Agents Chemother. 2004;48(6):1983–8. https://doi.org/10.1128/AAC.48.6.1983-1988.2004
  • [38] Stratton CW, Warner RR, Coudron PE, et al. Bismuth-mediated disruption of the glycocalyx-cell wall of Helicobacter pylori: ultrastructural evidence for a mechanism of action for bismuth salts. J Antimicrob Chemother. 1999;43(5):659–66. https://doi.org/10.1093/JAC/43.5.659
  • [39] Willershausen I, Wolf T, Kasaj A, et al. Influence of a bioceramic root end material and mineral trioxide aggregates on fibroblasts and osteoblasts. Arch Oral Biol. 2013;58(9):1232–7. https://doi.org/10.1016/j.archoralbio.2013.04.002
  • [40] Bin CV, Valera MC, Camargo SEA, et al. Cytotoxicity and genotoxicity of root canal sealers based on mineral trioxide aggregate. J Endod. 2012;38(4):495–500. https ://doi.org/10.1016/j.joen.2011.11.003
  • [41] Gomes-Cornélio AL, Rodrigues EM, Salles LP, et al. Bioactivity of MTA Plus, Biodentine and an experimental calcium silicate-based cement on human osteoblastlike cells. Int Endod J. 2017;50(1):39–47. https://doi.org/10.1111/iej.12589
  • [42] da Luz JZ, Machado TN, Bezerra AG, et al. Cytotoxicity of bismuth nanoparticles in the murine macrophage cell line RAW 264.7. J Mater Sci Mater Med. 2020;31(11):95. https://doi.org/10.1007/sl0856-020-06427-0
  • [43] Bingel L, Groh D, Karpukhina N, et al. Influence of dissolution medium pH on ion release and apatite formation of Bioglass® 45S5. Mater Lett. 2015;143:279–82. https://doi.org/10.1016/j.matlet.2014.12.124
  • [44] Moreno-Vargas YA, Luna-Arias JP, Flores-Flores JO. Hydration reactions and physicochemical properties in a novel tricalcium-dicalcium silicate-based cement containing hydroxyapatite nanoparticles and calcite: a comparative study. Ceram Int. 2017;43:13290–8. https://doi.org/10.1016/j.ceramint.2017.07.027
  • [45] Modareszadeh MR, Di Fiore PM, Tipton DA, et al. Cytotoxicity and alkaline phosphatase activity evaluation of EndoSequence root repair material. J Endod. 2012;38(8):1101–5. https://doi.org/10.1016/j.joen.2012.04.014
  • [46] Woo S-M, Kim W-J, Lim H-S, et al. Combination of mineral trioxide aggregate and platelet-rich fibrin promotes the odontoblastic differentiation and mineralization of human dental pulp cells via BMP/Smad signaling pathway. J Endod. 2016;42(1):82–8. https://doi.org/10.1016/j.joen.2015.06.019
  • [47] Kruse CR, Singh M, Targosinski S, et al. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study. Wound Repair and Regeneration 2017;25:260–9. https://doi.org/10.1111/wrr.12526
  • [48] Gandolfi MG, Taddei P, Siboni F, et al. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical–physical properties, bioactivity and biological behavior. Dent Mater. 2011;27(7):e134–e157.
  • [49] Vega-Jiménez AL, Almaguer-Flores A, Flores-Castaneda M, et al. Bismuth subsalicylate nanoparticles with anaerobic antibacterial activity for dental applications. Nanotechnology. 2017;28(43):1–12. https ://doi.org/10.1088/1361-6528/aa8838
  • [50] Takahashi N, Schachtele CF. Effect of pH on the growth and proteolytic activity of Por-phyromonas gingivalis and Bacteroides inter medius. J Dent Res. 1990;69:1266–9. https://doi.org/10.1177/00220345900690060801
  • [51] Bhagavathy S, Mahendiran C, Kanchana R. Identification of glucosyl transferase inhibitors from Psidium guajava against Streptococcus mutans in dental caries. J Tradit Complement Med. 2019;9:124–37. https://doi.org/10.1016/j.jterne.2017.09.003
  • [52] Cutajar A, Mallia B, Abela S, et al. Replacement of radiopacifier in mineral trioxide aggregate; characterization and determination of physical properties. Dent Mater. 2011;27(9):879–91. https://doi.org/10.1016/j.dental.2011.04.012
  • [53] Shahi S, Fakhri E, Yavari H, et al. Portland cement: an overview as a root repair material. Biomed Res Int. 2022;2022:1–13. https://doi.org/10.1155/2022/3314912
  • [54] Skwarek E, Janusz W, Sternik D. The influence of the hydroxyapatite synthesis method on the electrochemical, surface and adsorption properties of hydroxyapatite. Adsorp Sci Technol. 2017;35:507–18. https://doi. org/10.1177/0263617417698966.
  • [55] Zhang L, Hashimoto Y, Taishi T, et al. Fabrication of flower-shaped Bi2O3 superstructure by a facile template-free process. Appl Surf Sci. 2011;257(15):6577–82. https://doi.org/10.1016/j.apsusc.2011.02.081
  • [56] Wang Y, Zhao J, Wang Z. A simple low-temperature fabrication of oblique prism-like bismuth oxide via a one-step aqueous process. Colloids Surf A Physicochem Eng Asp. 2011;377(1–3):409–13. https://doi.org/10.1016/j.colsurfa.2011.01.038
  • [57] Lee B-N, Kim H-J, Chang H-S, et al. Effects of mineral trioxide aggregate mixed with hydration accelerators on osteoblastic differentiation. J Endod. 2014;40(12):2019–23. https://doi.org/10.1016/j.joen.2014.08.014
  • [58] Sharifi R, Araghid A, Ghanem S, et al. Effect of temperature on the setting time of mineral trioxide aggregate (MTA). J Med Life. 2015;8(2):88–91.
  • [59] Lee B-N, Chun S-J, Chang H-S, et al. Physical properties and biological effects of mineral trioxide aggregate mixed with methylcellulose and calcium chloride. J Appl Oral Sci. 2017;25(6):680–8. https://doi.org/10.1590/1678-7757-2017-0050
  • [60] Marciano MA, Costa RM, Camilleri J, et al. Assessment of color stability of white mineral trioxide aggregate angelus and bismuth oxide in contact with tooth structure. J Endod 2014; 40(8): 1235–40. https://doi.org/10.1016/j.joen.2014.01.044
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-739db5b6-a54c-446b-b34b-7929e0bb7faa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.