Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 34, No. 4 | 851--855
Tytuł artykułu

InP nanowires quality control using SEM and Raman spectroscopy

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three different types of samples of InP nanowires, i.e. undoped, doped with Si and doped with Te, were grown and measured using SEM and Raman spectroscopy. Scanning Electron Microscope (SEM) images showed differences in the length, homogeneity and curvature of the nanowires. The most homogenous wires, grown most perpendicular to the surface, were those Si doped. They were also the shortest. Raman spectroscopy showed that the nanowires doped with Si had the lowest Full Width at Half Maximum (FWHM) TO band, which suggests the highest crystal quality of these wires. For the wires doped with Te, which were the most inhomogeneous, a low energy acoustic band was also observed, which suggests the lowest crystal quality of these structures.
Słowa kluczowe
Wydawca

Rocznik
Strony
851--855
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw, Poland
autor
  • Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw, Poland
  • Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw, Poland
Bibliografia
  • [1] DUAN X., HUANG Y., AGARWAL R., LIEBER C., Nature 421 (2003), 241.
  • [2] SAMUELSON L., BJÖRK M., DEPPERT K., LARSSON M., OHLSSON B., PANEV N., PERSSON A., SKÖLD N., THELANDER C., WALLENBERG L., Physica E 21 (2004), 560.
  • [3] YAN R., GARGAS D.,YANG P., Nat. Photonics 3 (2009), 569.
  • [4] BORSTRÖM M., WALLENTIN J., HEURLIN M., FÄLT S., WICKERT P., LEENE J., MAGNUSSON M.H., DEPPERT K., SAMUELSON L., IEEE J. Sel. Top. Quant. Electron. 17 (2011), 1050.
  • [5] TOMIOKA K., YOSHIMURA M., FUKUI T., Nature 488 (2012), 189.
  • [6] KAYES B., ATWATER H., LEWIS N., J. Appl. Phys. 97 (2005), 114302.
  • [7] KEMPA T., CAHOON J., KIM S., DAY R., BELL D., PARK H., LIEBER C., Proc. Natl. Acad. Sci. USA 109, 1407 (2012).
  • [8] CHUANG L., MOEWE M., CHASE C., KOBAYASHI N., CHANG-HASNAIN C., CRANKSHAW S., Appl. Phys. Lett. 90 (2007), 043115.
  • [9] GLAS F., Phys. Rev. B 74 (2006), 121302.
  • [10] WALLENTIN J., ANTTU N., ASOLI D., HUFFMAN M., ABERG I., MAGNUSSON M., SIEFER G., FUSS-KAILUWEIT P., DIMROTH F., WITZIGMANN B., XU H., SAMUELSON L., DEPPERT K., BORGSTRÖM M., Science 339 (2013), 1057.
  • [11] MLRTENSSON T., CARLBERG P., BORGSTRÖM M., MONTELIUS L., SEIFERT W., SAMUELSON L., Nano Lett. 4 (2004), 699.
  • [12] GUDIKSEN M., WANG J., LIEBER C., J. Phys. Chem. B 105 (2001), 4062.
  • [13] DICK K.A., DEPPERT K., KARLSSON L.S., WALLENBERG L.R., SAMUELSON L., SEIFERT W., Adv. Funct. Mater. 15 (2005), 1603.
  • [14] GAO L., WOO R.L., LIANG B., POZUELO M., PRIKHODKO S., JACKSON M., GOEL N., HUDAIT M.K., HUFFAKER D.L., GOORSKY M.S , KODAMBAK A. S., HICKS R.F., Nano Lett. 9 (2009), 2223.
  • [15] KELRICH A., DUBROVSKII V.G., CALAHORRA Y., COHEN S., RITTER D., Nanotechnology 26 (2015), 085303.
  • [16] REN P., XU, J. WANG Y., ZHUANG X., ZHANG Q., ZHOU H., WAN Q., SHAN Z., ZHU, X. PAN A., Phys. Status Solidi n/a (2013).
  • [17] CHEN J., CONACHE G., PISTOL M.-E., GRAY, S.M., BORGSTRÖM M.T., XU H., XU H.Q., SAMUELSON L., HÅKANSON U., Nano Lett. 10 (2010), 1280.
  • [18] FANFAIR D.D., KORGEL B.A., Cryst. Growth Des. 5 (2005), 1971.
  • [19] HUNIA S. B., KAWAMURA T., FUJIKAWA S., NAKASHIMA H., FURUKAWA K., TORIMITSU K., WATANABE Y., Thin Solid Films 464-465 (2004), 244.
  • [20] PAIMAN S., GAO Q., TAN H.H., JAGADISH C., PEMASIRI K., MONTAZERI M., JACKSON H.E., SMITH L.M., YARRISON-RICE J.M., ZHANG X., ZOU J., Nanotechnology 20 (2009), 225606.
  • [21] GOTO H., NOSAKI K., TOMIOKA K., HARA S., HIRUMA K., MOTOHISA J., FUKUI T., Appl. Phys. Express 2 (2009), 035004.
  • [22] LIU J., CAI S., JIN G., THOMAS S., WANG K., J. Cryst. Growth 200 (1999), 106.
  • [23] MAEDA S., TOMIOKA K., HARA S., MOTOHISA J., Jpn. J. Appl. Phys. 51 (2012), 02BN03.
  • [24] WATANABE Y., HIBINO H., BHUNIA S., TATENO K., SEKIGUCHI T., Physica E 24 (2004), 133.
  • [25] NOVOTNY C.J., YU P.K.L., Appl. Phys. Lett. 87 (2005), 203111.
  • [26] WALLENTIN J., EK M., WALLENBERG L.R., SAMUELSON L., DEPPERT K., BORGSTRÖM M.T., Nano Lett. 10 (2010), 4807.
  • [27] YU S., MIAO G., JIN Y., ZHANG L., SONG H., JIANG H., LI Z., LI , D., SUN X., Physica E 42 (2010), 1540.
  • [28] YU S.J., ASAHI H., EMURA S., SUMIDA H., GONDA S., TANOUE H., J. Appl. Phys. 66 (1989), 856.
  • [29] RAO C.S.R., SUNDARAM S., SCHMIDT R.L., COMAS J., J. Appl. Phys. 54 (1983), 1808.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na
działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7380e6d1-8b64-4730-8089-cf75cde81d6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.