Warianty tytułu
Języki publikacji
Abstrakty
In the paper the mathematical model of the inverse one-dimensional problem of binary alloy solidification, with the material shrinkage phenomenon taken into account, is defined. The process is described by using the model of solidification in the temperature interval, whereas the shrinkage of material is modeled basing on the mass balance equation. The inverse problem consists in reconstruction of the heat transfer coefficient on the boundary of the casting mould separating the cast from the environment. Lack of this data is compensated by the measurements of temperature in the control point located inside the mould. The method of solving the investigated problem is based on two procedures: the implicit scheme of finite difference method supplemented by the procedure of correcting the field of temperature in the vicinity of liquidus and solidus curves and the immune optimization algorithm IRM.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Institute of Mathematics, Silesian University of Technology Kaszubska 23, 44-100 Gliwice, Poland , adam.zielonka@polsl.pl
autor
- Institute of Mathematics, Silesian University of Technology Kaszubska 23, 44-100 Gliwice, Poland
autor
- Institute of Mathematics, Silesian University of Technology Kaszubska 23, 44-100 Gliwice, Poland
Bibliografia
- Beck, J.V., Blackwell, B., 1988, Inverse Problems. Handbook of Numerical Heat Transfer, Wiley Intersc., New York.
- Bersini, H., Varela, F., 1991, The Immune Recruitment Mechanism: a selective evolutionary strategy, R.Belew, L. Booker, eds., Proceedings of the 4th International Conference on Genetic Algorithms,Morgan Kaufman, San Mateo, 520-526.
- Cheung, N., Santos, N.S., Quaresma, J.M.V., G.S.Dulikravich, G.S., Garcia, A., 2009, Interfacial heat transfer coefficients and solidification of an aluminum alloy in a rotary continuous caster, Int. J. Heat Mass Transfer, 52, 1-2, 451-459.
- Hetmaniok, E., Nowak, I., Słota, D., Zielonka, A., 2012,Determination of optimal parameters for the immune algorithm used for solving inverse heat conduction problems with and without a phase change, Numerical Heat Transfer B, 62, 462-478.
- Hetmaniok, E., Słota, D., Zielonka, A., 2017, Solution of the direct alloy solidification problem including the phenomenon of material shrinkage, Thermal Science, 21, 1A, 105-115.
- Hojny, M., Głowacki, M., 2009, The methodology of strain-stress curves determination for steel in semisolid state, Arch. Metall. Mater., 54, 475-483.
- Majchrzak, E., Mochnacki, B., 1995, Application of the BEM in the thermal theory of foundry, Eng. Anal. Bound. Elem., 16, 2, 99-121.
- Mochnacki, B., Suchy, J.S., 1995, Numerical Methods in Computations of Foundry Processes, PFTA, Cracow, Poland.
- Nawrat, A., Skorek, J., Sachajdak, A., 2009, Identification of the heat fluxes and thermal resistance on the ingotmould surface in continuous casting of metals, Inverse Probl. Sci. Eng., 17, 3, 399-409.
- Matlak, J., Słota, D., 2015, Solution of the pure metals solidification problem by involving the material shrinkage and the air-gap between material and mold, Arch. Foundry Eng., 15, 47-52.
- O’Mahoney, D., Browne, D.J., 2000, Use of experiment and an inverse method to study interface heat transfer during solidification in the investment casting process, Exp. Therm. Fluid Sci., 22, 3-4, 111-122.
- Piekarska, W., Kubiak, M., Bokota, A., 2011, Numerical simulation of thermal phenomena and phase transformations in laser-arc hybrid welded joint, Arch. Metall. ater., 56, 409-421.
- Ryfa, A., Bialecki, R., 2011, Retrieving the heat transfer coefficient for jet impingement from transient temperature meaurements, Int. J. Heat Fluid Flow, 32, 1024-1035.
- Sczygiol, A., Dyja, R., 2007, Evaluating the influence of selectedparameters on sensitivity of a numerical model of solidification, Archives of Foundry Engineering, 7(4), 159-164.
- Shestakov, N.I., Lukanin, Y.U.V., Kostin, Y.U.P., 1994, Heat exchange regularities in a crystallizer, Izv. V.U.Z. Chernaya Metall., 1, 22-23.
- Sowa, L., Bokota, A., 2007, Numerical modeling of thermal and fluid flow phenomena in the mould channel, Archives of Foundry Engineering, 7(4), 165-168.
- Szeliga, D., Gaweda, J., Pietrzyk, M., 2004, Parameters identification of material models based on the inverse analysis, Int. J. Appl. Math. Comput. Sci., 14, 549-556.
- Talar, J., Szeliga, D., Pietrzyk, M., 2002, Application of genetic algorithm for identification of rheological and friction parameters in copper deformation process, Arch. Metallurgy, 47, 27-41.
- Telejko, T., Malinowski, Z., 2004, Application of an inverse solution to the thermal conductivity identification using the finite element method, J. Mater. Process. Technol., 146 (2), 145-155.
- Zielonka, A., Hetmaniok, E., Słota, D., 2017, Inverse alloy solidification problem including the material shrinkage phenomenon solved by using the bee algorithm, Int. Comm. Heat Mass Transf., 87, 295-301.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-73455a52-2e69-4e7a-83b1-1a9d80d1db1d