Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 97, nr 1 | 7--14
Tytuł artykułu

Modeling a membrane reactor for a zero-emission combined cycle power plant

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A zero emission gas turbine power plant with a membrane reactor works on the concept of using ion oxygen transport membrane (ITM) technology in order to apply carbon dioxide capture with limited loss of electricity generation efficiency. The membrane reactor replaces the combustor in the gas turbine and combines three functions: oxygen separation from air through a high-temperature membrane, fuel combustion in the internal reactor cycle, and heating oxygen-depleted air, which is directed to the turbine. This paper presents a gas turbine power plant integrated with a membrane reactor and a detailed description of the membrane reactor model. Selected results of thermodynamic analysis of the modeled power plant are presented.
Wydawca

Rocznik
Strony
7--14
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Power Engineering and Power Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland, janusz.kotowicz@polsl.pl
autor
  • Institute of Power Engineering and Power Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland, marcin.job@polsl.pl
Bibliografia
  • [1] R. K. Pachauri, M. R. Allen, V. Barros, J. Broome,W. Cramer, R. Christ, J. Church, L. Clarke, Q. Dahe, P. Dasgupta, et al., Climate change 2014: synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, IPCC, 2014.
  • [2] Energy and climate change, World energy outlook special report, International Energy Agency (2015).
  • [3] T. Chmielniak, Energy technologies, WNT, Warsaw, 2008.
  • [4] K. Badyda, Perspektywy rozwoju technologii turbin gazowych oraz bloków gazowo-parowych [state and prospects of gas turbine and combined cycle technology development], Rynek Energii 4 (113) (2014) 74–82.
  • [5] J.-P. Tranier, R. Dubettier, A. Darde, N. Perrin, Air separation, flue gas compression and purification units for oxy-coal combustion systems, Energy Procedia 4 (2011) 966–971.
  • [6] L. Zheng (Ed.), Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture, Woodhead Publishing Limited, 2011.
  • [7] A. R. Smith, J. Klosek, A review of air separation technologies and their integration with energy conversion processes, Fuel processing technology 70 (2) (2001) 115–134.
  • [8] J. Kotowicz, S. Michalski, Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation, Energy 64 (2014) 109–119.
  • [9] T. Burdyny, H. Struchtrup, Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process, Energy 35 (5) (2010) 1884–1897.
  • [10] E. Yantovsky, J. Górski, M. Shokotov, Zero emissions power cycles, CRC Press, 2009.
  • [11] C. Liu, G. Chen, N. Sipöcz, M. Assadi, X.-S. Bai, Characteristics of oxyfuel combustion in gas turbines, Applied Energy 89 (1) (2012) 387–394.
  • [12] N. Zhang, N. Lior, Two novel oxy-fuel power cycles integrated with natural gas reforming and co 2 capture, Energy 33 (2) (2008) 340–351.
  • [13] J. Kotowicz, M. Job, M. Brzęczek, Porównanie termodynamiczne elektrowni gazowo-parowych bez iz wychwytem co2, Rynek Energii 112 (2014) 82–87.
  • [14] K. Foy, J. McGovern, Comparison of ion transport membranes, in: Proc. 4th Annual Conference on Carbon Capture and Sequestration, 2005, pp. 2–5.
  • [15] H. Lu, Y. Cong, W. Yang, Oxygen permeability and stability of ba 0.5 sr 0.5 co 0.8 fe 0.2 o 3-δ as an oxygen-permeable membrane at high pressures, Solid State Ionics 177 (5) (2006) 595–600.
  • [16] S. G. Sundkvist, S. Julsrud, B. Vigeland, T. Naas, M. Budd, H. Leistner, D. Winkler, Development and testing of azep reactor components, International Journal of Greenhouse Gas Control 1 (2) (2007) 180–187.
  • [17] H. M. Kvamsdal, K. Jordal, O. Bolland, A quantitative comparison of gas turbine cycles with co2 capture, Energy 32 (1) (2007) 10–24.
  • [18] GE Enter Software, LLC, GateCycle Version 5.40. Manual.
  • [19] J. Kotowicz, M. Job, M. Brzęczek, The characteristics of ultramodern combined cycle power plants, Energy 92 (2015) 197–211.
  • [20] F. Selimovic, Computational analysis and modeling techniques for monolithic membrane reactors related to co2 free power processes, Ph.D. thesis, University of Lund, Sweden (2007).
  • [21] M. van der Haar, Mixed-conducting perovskite membranes for oxygen separation. Towards the development of a supported thin-film membrane, Ph.D. thesis, University of Twente, Enschede, Netherlands (2001).
  • [22] K. F. R.Warcholand, J. McGovern, A detailed simulation of the zeitmop cycle with combined air separation and combustion, Proc. of ECOS (2007) 25–28.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-72b9c1a8-1076-4865-b004-aa61650723e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.